-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathcommon.py
588 lines (494 loc) · 20.3 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import pathlib
import warnings
from abc import ABC, abstractmethod
from dataclasses import asdict, dataclass
from typing import Any, Dict, List, Optional, Sequence
from tensordict import TensorDictBase
from tensordict.nn import TensorDictModuleBase, TensorDictSequential
from tensordict.utils import NestedKey
from torchrl.data import Composite, TensorSpec, Unbounded
from benchmarl.utils import _class_from_name, _read_yaml_config, DEVICE_TYPING
def _check_spec(tensordict, spec):
if not spec.is_in(tensordict):
raise ValueError(f"TensorDict {tensordict} not in spec {spec}")
def parse_model_config(cfg: Dict[str, Any]) -> Dict[str, Any]:
del cfg["name"]
kwargs = {}
for key, value in cfg.items():
if key.endswith("class") and value is not None:
value = _class_from_name(cfg[key])
kwargs.update({key: value})
return kwargs
def output_has_agent_dim(share_params: bool, centralised: bool) -> bool:
"""
This is a dynamically computed attribute that indicates if the output will have the agent dimension.
This will be false when share_params==True and centralised==True, and true in all other cases.
When output_has_agent_dim is true, your model's output should contain the multiagent dimension,
and the dimension should be absent otherwise
"""
if share_params and centralised:
return False
else:
return True
class Model(TensorDictModuleBase, ABC):
"""
Abstract class representing a model.
Models in BenchMARL are instantiated per agent group.
This means that each model will process the inputs for a whole group of agents
They are associated with input and output specs that define their domains.
Args:
input_spec (Composite): the input spec of the model
output_spec (Composite): the output spec of the model
agent_group (str): the name of the agent group the model is for
n_agents (int): the number of agents this module is for
device (str): the model's device
input_has_agent_dim (bool): This tells the model if the input will have a multi-agent dimension or not.
For example, the input of policies will always have this set to true,
but critics that use a global state have this set to false as the state is shared by all agents
centralised (bool): This tells the model if it has full observability.
This will always be true when ``self.input_has_agent_dim==False``,
but in cases where the input has the agent dimension, this parameter is
used to distinguish between a decentralised model (where each agent's data
is processed separately) and a centralized model, where the model pools all data together
share_params (bool): This tells the model if it should have only one set of parameters
or a different set of parameters for each agent.
This is independent of the other options as it is possible to have different parameters
for centralized critics with global input.
action_spec (Composite): The action spec of the environment
model_index (int): the index of the model in a sequence
is_critic (bool): Whether the model is a critic
"""
def __init__(
self,
input_spec: Composite,
output_spec: Composite,
agent_group: str,
input_has_agent_dim: bool,
n_agents: int,
centralised: bool,
share_params: bool,
device: DEVICE_TYPING,
action_spec: Composite,
model_index: int,
is_critic: bool,
):
TensorDictModuleBase.__init__(self)
self.input_spec = input_spec
self.output_spec = output_spec
self.agent_group = agent_group
self.input_has_agent_dim = input_has_agent_dim
self.centralised = centralised
self.share_params = share_params
self.device = device
self.n_agents = n_agents
self.action_spec = action_spec
self.model_index = model_index
self.is_critic = is_critic
self.in_keys = list(self.input_spec.keys(True, True))
self.out_keys = list(self.output_spec.keys(True, True))
self.out_key = self.out_keys[0]
self.output_leaf_spec = self.output_spec[self.out_key]
self._perform_checks()
@property
def output_has_agent_dim(self) -> bool:
"""
This is a dynamically computed attribute that indicates if the output will have the agent dimension.
This will be false when ``share_params==True and centralised==True``, and true in all other cases.
When output_has_agent_dim is true, your model's output should contain the multi-agent dimension,
and the dimension should be absent otherwise
"""
return output_has_agent_dim(self.share_params, self.centralised)
@property
def in_key(self) -> NestedKey:
if len(self.in_keys) > 1:
raise ValueError("Model has more than one input key")
return self.in_keys[0]
@property
def input_leaf_spec(self) -> TensorSpec:
return self.input_spec[self.in_key]
def _perform_checks(self):
if not self.input_has_agent_dim and not self.centralised:
raise ValueError(
"If input does not have an agent dimension the model should be marked as centralised"
)
if len(self.out_keys) > 1:
raise ValueError("Currently models support just one output key")
if self.agent_group in self.input_spec.keys() and self.input_spec[
self.agent_group
].shape != (self.n_agents,):
raise ValueError(
"If the agent group is in the input specs, its shape should be the number of agents"
)
if self.agent_group in self.output_spec.keys() and self.output_spec[
self.agent_group
].shape != (self.n_agents,):
raise ValueError(
"If the agent group is in the output specs, its shape should be the number of agents"
)
def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
# _check_spec(tensordict, self.input_spec)
tensordict = self._forward(tensordict)
# _check_spec(tensordict, self.output_spec)
return tensordict
def share_params_with(self, other_model):
"""Share paramters with another identical model model.
This function modifies in-place the parameters of ``other_model`` to reference the parameters of ``self``
Args:
other_model (Model): the model that will share the parameters of ``self``.
"""
if (
self.share_params != other_model.share_params
or self.centralised != other_model.centralised
or self.input_has_agent_dim != other_model.input_has_agent_dim
or self.input_spec != other_model.input_spec
or self.output_spec != other_model.output_spec
):
warnings.warn(
"Sharing parameters with models that are not identical. "
"This might result in unintended behavior or error."
)
for param, other_param in zip(self.parameters(), other_model.parameters()):
other_param.data[:] = param.data
###############################
# Abstract methods to implement
###############################
@abstractmethod
def _forward(self, tensordict: TensorDictBase) -> TensorDictBase:
"""
Method to implement for the forward pass of the model.
It should read self.in_keys, process it and write self.out_key.
Args:
tensordict (TensorDictBase): the input td
Returns: the input td with the written self.out_key
"""
raise NotImplementedError
class SequenceModel(Model):
"""A sequence of :class:`~benchmarl.models.Model`
Args:
models (list of Model): the models in the sequence
"""
def __init__(
self,
models: List[Model],
):
super().__init__(
n_agents=models[0].n_agents,
input_spec=models[0].input_spec,
output_spec=models[-1].output_spec,
centralised=models[0].centralised,
share_params=models[0].share_params,
device=models[0].device,
agent_group=models[0].agent_group,
input_has_agent_dim=models[0].input_has_agent_dim,
action_spec=models[0].action_spec,
model_index=models[0].model_index,
is_critic=models[0].is_critic,
)
self.models = TensorDictSequential(*models)
self.in_keys = self.models.in_keys
self.out_keys = self.models.out_keys
def _forward(self, tensordict: TensorDictBase) -> TensorDictBase:
return self.models(tensordict)
@dataclass
class ModelConfig(ABC):
"""
Dataclass representing a :class:`~benchmarl.models.Model` configuration.
This should be overridden by implemented models.
Implementors should:
1. add configuration parameters for their algorithm
2. implement all abstract methods
"""
def get_model(
self,
input_spec: Composite,
output_spec: Composite,
agent_group: str,
input_has_agent_dim: bool,
n_agents: int,
centralised: bool,
share_params: bool,
device: DEVICE_TYPING,
action_spec: Composite,
model_index: int = 0,
) -> Model:
"""
Creates the model from the config.
Args:
input_spec (Composite): the input spec of the model
output_spec (Composite): the output spec of the model
agent_group (str): the name of the agent group the model is for
n_agents (int): the number of agents this module is for
device (str): the mdoel's device
input_has_agent_dim (bool): This tells the model if the input will have a multi-agent dimension or not.
For example, the input of policies will always have this set to true,
but critics that use a global state have this set to false as the state is shared by all agents
centralised (bool): This tells the model if it has full observability.
This will always be true when self.input_has_agent_dim==False,
but in cases where the input has the agent dimension, this parameter is
used to distinguish between a decentralised model (where each agent's data
is processed separately) and a centralized model, where the model pools all data together
share_params (bool): This tells the model if it should have only one set of parameters
or a different set of parameters for each agent.
This is independent of the other options as it is possible to have different parameters
for centralized critics with global input.
action_spec (Composite): The action spec of the environment
model_index (int): the index of the model in a sequence. Defaults to 0.
Returns: the Model
"""
return self.associated_class()(
**asdict(self),
input_spec=input_spec,
output_spec=output_spec,
agent_group=agent_group,
input_has_agent_dim=input_has_agent_dim,
n_agents=n_agents,
centralised=centralised,
share_params=share_params,
device=device,
action_spec=action_spec,
model_index=model_index,
is_critic=self.is_critic,
)
@staticmethod
@abstractmethod
def associated_class():
"""
The associated Model class
"""
raise NotImplementedError
@property
def is_rnn(self) -> bool:
"""
Whether the model is an RNN
"""
return False
@property
def is_critic(self):
"""
Whether the model is a critic
"""
if not hasattr(self, "_is_critic"):
self._is_critic = False
return self._is_critic
@is_critic.setter
def is_critic(self, value):
"""
Set whether the model is a critic
"""
self._is_critic = value
def get_model_state_spec(self, model_index: int = 0) -> Composite:
"""Get additional specs needed by the model as input.
This method is useful for adding recurrent states.
The returned value should be key: spec with the desired ending shape.
The batch and agent dimensions will automatically be added to the spec.
Args:
model_index (int, optional): the index of the model. Defaults to 0.
"""
return Composite()
def _get_model_state_spec_inner(
self, model_index: int = 0, group: str = None
) -> Composite:
return self.get_model_state_spec(model_index)
@staticmethod
def _load_from_yaml(name: str) -> Dict[str, Any]:
yaml_path = (
pathlib.Path(__file__).parent.parent
/ "conf"
/ "model"
/ "layers"
/ f"{name.lower()}.yaml"
)
return _read_yaml_config(str(yaml_path.resolve()))
@classmethod
def get_from_yaml(cls, path: Optional[str] = None):
"""
Load the model configuration from yaml
Args:
path (str, optional): The full path of the yaml file to load from.
If None, it will default to
benchmarl/conf/model/layers/self.associated_class().__name__
Returns: the loaded AlgorithmConfig
"""
if path is None:
config = ModelConfig._load_from_yaml(name=cls.associated_class().__name__)
else:
config = _read_yaml_config(path)
config = parse_model_config(config)
return cls(**config)
@dataclass
class SequenceModelConfig(ModelConfig):
"""Dataclass for a :class:`~benchmarl.models.SequenceModel`.
Examples:
.. code-block:: python
import torch_geometric
from torch import nn
from benchmarl.algorithms import IppoConfig
from benchmarl.environments import VmasTask
from benchmarl.experiment import Experiment, ExperimentConfig
from benchmarl.models import SequenceModelConfig, GnnConfig, MlpConfig
experiment = Experiment(
algorithm_config=IppoConfig.get_from_yaml(),
model_config=SequenceModelConfig(
model_configs=[
MlpConfig(num_cells=[8], activation_class=nn.Tanh, layer_class=nn.Linear),
GnnConfig(
topology="full",
self_loops=False,
gnn_class=torch_geometric.nn.conv.GraphConv,
),
MlpConfig(num_cells=[6], activation_class=nn.Tanh, layer_class=nn.Linear),
],
intermediate_sizes=[5, 3],
),
seed=0,
config=ExperimentConfig.get_from_yaml(),
task=VmasTask.NAVIGATION.get_from_yaml(),
)
experiment.run()
"""
model_configs: Sequence[ModelConfig]
intermediate_sizes: Sequence[int]
def __post_init__(self):
for model_config in self.model_configs:
if isinstance(model_config, EnsembleModelConfig):
raise TypeError(
"SequenceModelConfig cannot contain EnsembleModelConfig layers, but the opposite can be done."
)
def get_model(
self,
input_spec: Composite,
output_spec: Composite,
agent_group: str,
input_has_agent_dim: bool,
n_agents: int,
centralised: bool,
share_params: bool,
device: DEVICE_TYPING,
action_spec: Composite,
model_index: int = 0,
) -> Model:
n_models = len(self.model_configs)
if not n_models > 0:
raise ValueError(
f"SequenceModelConfig expects n_models > 0, got {n_models}"
)
if len(self.intermediate_sizes) != n_models - 1:
raise ValueError(
f"SequenceModelConfig intermediate_sizes len should be {n_models - 1}, got {len(self.intermediate_sizes)}"
)
out_has_agent_dim = output_has_agent_dim(share_params, centralised)
next_centralised = not out_has_agent_dim
intermediate_specs = [
Composite(
{
f"_{agent_group}{'_critic' if self.is_critic else ''}_intermediate_{i}": Unbounded(
shape=(n_agents, size) if out_has_agent_dim else (size,)
)
}
)
for i, size in enumerate(self.intermediate_sizes)
] + [output_spec]
models = [
self.model_configs[0].get_model(
input_spec=input_spec,
output_spec=intermediate_specs[0],
agent_group=agent_group,
input_has_agent_dim=input_has_agent_dim,
n_agents=n_agents,
centralised=centralised,
share_params=share_params,
device=device,
action_spec=action_spec,
model_index=0,
)
]
next_models = [
self.model_configs[i].get_model(
input_spec=intermediate_specs[i - 1],
output_spec=intermediate_specs[i],
agent_group=agent_group,
input_has_agent_dim=out_has_agent_dim,
n_agents=n_agents,
centralised=next_centralised,
share_params=share_params,
device=device,
action_spec=action_spec,
model_index=i,
)
for i in range(1, n_models)
]
models += next_models
return SequenceModel(models)
@staticmethod
def associated_class():
return SequenceModel
@property
def is_critic(self):
if not hasattr(self, "_is_critic"):
self._is_critic = False
return self._is_critic
@is_critic.setter
def is_critic(self, value):
self._is_critic = value
for model_config in self.model_configs:
model_config.is_critic = value
def get_model_state_spec(self, model_index: int = 0) -> Composite:
spec = Composite()
for i, model_config in enumerate(self.model_configs):
spec.update(model_config.get_model_state_spec(model_index=i))
return spec
@property
def is_rnn(self) -> bool:
is_rnn = False
for model_config in self.model_configs:
is_rnn += model_config.is_rnn
return is_rnn
@classmethod
def get_from_yaml(cls, path: Optional[str] = None):
raise NotImplementedError
@dataclass
class EnsembleModelConfig(ModelConfig):
model_configs_map: Dict[str, ModelConfig]
def get_model(self, agent_group: str, **kwargs) -> Model:
if agent_group not in self.model_configs_map.keys():
raise ValueError(
f"Environment contains agent group '{agent_group}' not present in the EnsembleModelConfig configuration."
)
return self.model_configs_map[agent_group].get_model(
**kwargs, agent_group=agent_group
)
@staticmethod
def associated_class():
class EnsembleModel(Model):
pass
return EnsembleModel
@property
def is_critic(self):
if not hasattr(self, "_is_critic"):
self._is_critic = False
return self._is_critic
@is_critic.setter
def is_critic(self, value):
self._is_critic = value
for model_config in self.model_configs_map.values():
model_config.is_critic = value
def _get_model_state_spec_inner(
self, model_index: int = 0, group: str = None
) -> Composite:
return self.model_configs_map[group].get_model_state_spec(
model_index=model_index
)
@property
def is_rnn(self) -> bool:
is_rnn = False
for model_config in self.model_configs_map.values():
is_rnn += model_config.is_rnn
return is_rnn
@classmethod
def get_from_yaml(cls, path: Optional[str] = None):
raise NotImplementedError