-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.R
229 lines (176 loc) · 4.24 KB
/
main.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
load("sample_data.Rdata")
D = data
#stili V1
#x<-c(D[ ,1])
#stili V2
#y<-c(D[ ,2])
G1 = D[,c(1,2)]
G2 = D[,c(3,4)]
G3 = D[,c(5,6)]
G4 = D[,c(7,8)]
G5 = D[,c(9,10)]
#o mesos oros (deigmatikos mesos) tis emfanisis
#tou Gi gonidiou ston plithismo
#kathe pij tautizetai me tin sixnotita pij^2
freq <- function(g, a, b){
j <- 0
for(i in 1:10000) {
if (g[i,1] == a && g[i,2] == b) {
j <- j + 1
}
}
return(j/10000)
}
#GIA TO G1
#(1,1)
p11 <- freq(G1, 1, 1) ; p11
#(2,2)
p12 <- freq(G1, 2, 2) ; p12
#(1,2) or (2,1)
p112 <- 1 - p11 - p12 ; p112
# <-0
#for(i in 1:10000) {
# if((G1[i,1] == 1 && G1[i,2] == 2) || (G1[i,1] == 2 && G1[i,2] == 1)) {
# j <- j+1
# }
#}
#p12 <- j/10000 ; p12
#GIA TO G2
#(2,2)
p22 <- freq(G2, 2, 2) ; p22
#(1,1)
p21 <- freq(G2, 1, 1) ; p21
#(1,2) or (2,1)
p212 = 1 - p21 - p22 ; p212
#GIA TO G3
#(2,2)
p32 <- freq(G3, 2, 2) ; p32
#(1,1)
p31 <- freq(G3, 1, 1) ; p31
#(3,3)
p33 <- freq(G3, 3, 3) ; p33
#(1,2) or (2,1)
j <- 0
for(i in 1:10000) {
if((G3[i,1] == 1 && G3[i,2] == 2) || (G3[i,1] == 2 && G3[i,2] == 1)) {
j <- j+1
}
}
p312 <- j/10000 ; p312
#(1,3) or (3,1)
j <- 0
for(i in 1:10000) {
if((G3[i,1] == 1 && G3[i,2] == 3) || (G3[i,1] == 3 && G3[i,2] == 1)) {
j <- j+1
}
}
p313 <- j/10000 ; p313
#(2,3) or (3,2)
j <- 0
for(i in 1:10000) {
if((G3[i,1] == 3 && G3[i,2] == 2) || (G3[i,1] == 2 && G3[i,2] == 3)) {
j <- j+1
}
}
p323 <- j/10000 ; p323
#GIA TO G4
#(1,1)
p41 <- freq(G4, 1, 1) ; p41
#(2,2)
p42 <- freq(G4, 2, 2) ; p42
#(3,3)
p43 <- freq(G4, 3, 3) ; p43
#(1,2) or (2,1)
j <- 0
for(i in 1:10000) {
if((G4[i,1] == 1 && G4[i,2] == 2) || (G4[i,1] == 2 && G4[i,2] == 1)) {
j <- j+1
}
}
p412 <- j/10000 ; p412
#(1,3) or (3,1)
j <- 0
for(i in 1:10000) {
if((G4[i,1] == 1 && G4[i,2] == 3) || (G4[i,1] == 3 && G4[i,2] == 1)) {
j <- j+1
}
}
p413 <- j/10000 ; p413
#(2,3) or (3,2)
j <- 0
for(i in 1:10000) {
if((G4[i,1] == 3 && G4[i,2] == 2) || (G4[i,1] == 2 && G4[i,2] == 3)) {
j <- j+1
}
}
p423 <- j/10000 ; p423
#GIA TO G5
#(3,3)
p53 <- freq(G5, 3, 3) ; p53
#(1,1)
p51 <- freq(G5, 1, 1) ; p51
#(2,2)
p52 <- freq(G5, 2, 2) ; p52
#(1,2) or (2,1)
j <- 0
for(i in 1:10000) {
if((G5[i,1] == 1 && G5[i,2] == 2) || (G5[i,1] == 2 && G5[i,2] == 1)) {
j <- j+1
}
}
p512 <- j/10000 ; p512
#(1,3) or (3,1)
j <- 0
for(i in 1:10000) {
if((G5[i,1] == 1 && G5[i,2] == 3) || (G5[i,1] == 3 && G5[i,2] == 1)) {
j <- j+1
}
}
p513 <- j/10000 ; p513
#(2,3) or (3,2)
j <- 0
for(i in 1:10000) {
if((G5[i,1] == 3 && G5[i,2] == 2) || (G5[i,1] == 2 && G5[i,2] == 3)) {
j <- j+1
}
}
p523 <- j/10000 ; p523
frequency <- c(p11, p22, p32, p41, p53) ; frequency
#i aixnotita emfanisis tou identified gonidiou simfona me ti
#deigmatiki sixnotita emfanisis tou kathe gonidiou (efoson einai anexartita)
#L0 <- p11*p22*p32*p41*p53 ; L0
L0 <- prod(frequency) ; L0
#i pithanotita o Babis ws gios twn mother & father na exei to identified
#dna sequence gia ta Gi (efoson einai anexartita)
L1 <- 1*1 * (1/2)*(1/2) * (1/2)*(1/2) * (1)*(1/2) * (1/2)*(1/2) ; L1
LR <- L1/L0; LR
#ftiaxnw deigmata dna me tis pithanotites sixnotitas pou exw vrei
l <- 1e+07 ; l
new_data = c()
set.seed(185)
for(i in 1:5){
a = sample(c(11,22,12), l, replace = T, prob = c(p11, p12, p112))
b = sample(c(11,22,12), l, replace = T, prob = c(p11, p12, p112))
c = sample(c(11,22,33,12,13,23), l, replace = T, prob = c(p31, p32, p33, p312 , p313, p323))
d = sample(c(11,22,33,12,13,23), l, replace = T, prob = c(p41, p42, p43, p412 , p413, p423))
e = sample(c(11,22,33,12,13,23), l, replace = T, prob = c(p51, p52, p53, p512 , p513, p523))
rdata <- cbind(a,b,c,d,e)
colnames(rdata) = c("G1", "G2","G3","G4","G5")
j <- 0
for (i in 1:l){
if(rdata[i,1] == 11 && rdata[i,2] == 22 &&
rdata[i,3] == 22 && rdata[i,4] == 11 &&
rdata[i,5] == 33){
j <- j+1
}
}
new_data = c(new_data, j) ; #lista me plithos atomon me "dna = evidence dna" gia 5 tuxaia deigmata apo 1e+07=10000000 atoma
}
#sixnotita emfanisis atomou me "dna = evidence dna" gia 5 tyxaia peiramata
new_freq <- new_data/l ; print(new_freq)
#oi logoi pithanofaneiwn an eixa ta parapanw 5 deigmata gia data
new_LR <- c()
for (i in 1:5){
new_LR = c(new_LR, L1/new_freq[i])
}
new_LR