-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_compression_HSI.py
293 lines (169 loc) · 5.89 KB
/
image_compression_HSI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#!/usr/bin/env python
# coding: utf-8
# In[59]:
import spectral
# In[60]:
from spectral import *
# In[61]:
from scipy.io import loadmat
# In[62]:
#loading the hyperspectral dataset
Z = loadmat('PaviaU.mat')
W = loadmat('PaviaU_gt.mat')
# In[63]:
def read_HSI():
X = loadmat('PaviaU.mat')['paviaU']
Y = loadmat('PaviaU_gt.mat')['paviaU_gt']
print(f"X shape: {X.shape}\nY shape: {Y.shape}")
return X, Y
# In[64]:
X, Y = read_HSI()
# In[65]:
import numpy as np
import tensorly as tl
import matplotlib.pylab as plt
import time
from tensorly.decomposition import non_negative_tucker
from PIL import Image
from skimage.measure import compare_psnr
random_state = 1234
# In[66]:
data = X
print('Image Shape:' + str(data.shape))
# In[67]:
data_float = data.astype(np.float32)
time0 = time.time()
# In[68]:
#1.compressing the data set using NTD
tucker_ranks = [100, 50, 10]
core, factors = non_negative_tucker(data_float, rank=tucker_ranks, n_iter_max=1000,init='random', tol=0.0001, random_state=random_state, verbose=True)
tucker_tensor=(core, factors)
#storing back the decomposed tensor
data_reconstruction = tl.tucker_to_tensor(tucker_tensor, transpose_factors=False)
# In[69]:
print('Image Reconstruction Shape:' + str(data_reconstruction.shape))
# In[70]:
im_reconstruction = (data_reconstruction.astype(int))
# In[71]:
mse=[]
comprt=[]
psnr=[]
# In[72]:
#calculating the compression ratio
size_decomposition = sum([factor.size for factor in factors]) + core.size
compression_ratio = (data.size / size_decomposition)
print('Image Compression Ratio:' + str(compression_ratio))
comprt.append(compression_ratio)
# In[73]:
#calculating the psnr
psnr1 = compare_psnr(data, im_reconstruction)
print('Image Compare PSNR:' + str(psnr1))
psnr.append(psnr1)
# In[74]:
#calculating the decomposition time
print('Decomposition Time:' + str(time.time() - time0))
# In[75]:
X.max()
# In[76]:
X.size
# In[77]:
#calculating the mean square error
msqer = np.mean((im_reconstruction-data)**2)
print('Mean Square Error:' + str(msqer))
mse.append(msqer)
# In[78]:
im_reconstruction.size
# In[79]:
#2.compressing the data set using NTD
tucker_ranks = [200, 40, 10]
core, factors = non_negative_tucker(data_float, rank=tucker_ranks, n_iter_max=1000,init='random', tol=0.0001, random_state=random_state, verbose=True)
tucker_tensor=(core, factors)
data_reconstruction = tl.tucker_to_tensor(tucker_tensor, transpose_factors=False)
im_reconstruction = (data_reconstruction.astype(int))
size_decomposition = sum([factor.size for factor in factors]) + core.size
compression_ratio = (data.size / size_decomposition)
print('Image Compression Ratio:' + str(compression_ratio))
comprt.append(compression_ratio)
psnr1 = compare_psnr(data, im_reconstruction)
print('Image Compare PSNR:' + str(psnr1))
psnr.append(psnr1)
msqer = np.mean((im_reconstruction-data)**2)
print('Mean Square Error:' + str(msqer))
mse.append(msqer)
# In[80]:
#3.compressing the data set using NTD
tucker_ranks = [50, 25, 5]
core, factors = non_negative_tucker(data_float, rank=tucker_ranks, n_iter_max=1000,init='random', tol=0.0001, random_state=random_state, verbose=True)
tucker_tensor=(core, factors)
data_reconstruction = tl.tucker_to_tensor(tucker_tensor, transpose_factors=False)
im_reconstruction = (data_reconstruction.astype(int))
size_decomposition = sum([factor.size for factor in factors]) + core.size
compression_ratio = (data.size / size_decomposition)
print('Image Compression Ratio:' + str(compression_ratio))
comprt.append(compression_ratio)
psnr1 = compare_psnr(data, im_reconstruction)
print('Image Compare PSNR:' + str(psnr1))
psnr.append(psnr1)
msqer = np.mean((im_reconstruction-data)**2)
print('Mean Square Error:' + str(msqer))
mse.append(msqer)
# In[81]:
#4.compressing the data set using NTD
tucker_ranks = [300, 150, 30]
core, factors = non_negative_tucker(data_float, rank=tucker_ranks, n_iter_max=1000,init='random', tol=0.0001, random_state=random_state, verbose=True)
tucker_tensor=(core, factors)
data_reconstruction = tl.tucker_to_tensor(tucker_tensor, transpose_factors=False)
im_reconstruction = (data_reconstruction.astype(int))
size_decomposition = sum([factor.size for factor in factors]) + core.size
compression_ratio = (data.size / size_decomposition)
print('Image Compression Ratio:' + str(compression_ratio))
comprt.append(compression_ratio)
psnr1 = compare_psnr(data, im_reconstruction)
print('Image Compare PSNR:' + str(psnr1))
psnr.append(psnr1)
msqer = np.mean((im_reconstruction-data)**2)
print('Mean Square Error:' + str(msqer))
mse.append(msqer)
# In[82]:
#5.compressing the data set using NTD
tucker_ranks = [100, 40, 20]
core, factors = non_negative_tucker(data_float, rank=tucker_ranks, n_iter_max=1000,init='random', tol=0.0001, random_state=random_state, verbose=True)
tucker_tensor=(core, factors)
data_reconstruction = tl.tucker_to_tensor(tucker_tensor, transpose_factors=False)
im_reconstruction = (data_reconstruction.astype(int))
size_decomposition = sum([factor.size for factor in factors]) + core.size
compression_ratio = (data.size / size_decomposition)
print('Image Compression Ratio:' + str(compression_ratio))
comprt.append(compression_ratio)
psnr1 = compare_psnr(data, im_reconstruction)
print('Image Compare PSNR:' + str(psnr1))
psnr.append(psnr1)
msqer = np.mean((im_reconstruction-data)**2)
print('Mean Square Error:' + str(msqer))
mse.append(msqer)
# In[83]:
psnr
# In[84]:
mse
# In[85]:
comprt
# In[86]:
#Graph showing variation of Mean Squared Error with the Compression Ratio
import matplotlib.pyplot as plt
x1 = comprt
y1 = mse
plt.plot(x1, y1, label = "MSE")
plt.xlabel("Compression Ratio")
plt.ylabel("MSE")
plt.legend()
plt.show()
# In[87]:
#Graph showing variation of PSNR with the Compression Ratio
x2 = comprt
y2 = psnr
plt.plot(x2, y2, label = "PSNR")
plt.xlabel("Compression Ratio")
plt.ylabel("PSNR")
plt.legend()
plt.show()
# In[ ]: