forked from tkschuler/EarthSHAB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
165 lines (129 loc) · 5.4 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import math
from termcolor import colored
import matplotlib.pyplot as plt
import fluids
import gmplot
import config_earth
import pandas as pd
from matplotlib.pyplot import cm
import matplotlib as mpl
import os
import solve_states
import GFS
import radiation
import windmap
""" This files creates a family of predictions at different float altitudes. Float altitudes are adjusted by
changing the payload mass in .25 increments.
"""
if not os.path.exists('trajectories'):
os.makedirs('trajectories')
coord = config_earth.simulation['start_coord']
nc_start = config_earth.netcdf["nc_start"]
gfs = GFS.GFS(coord)
gmap1 = gmplot.GoogleMapPlotter(coord["lat"], coord["lon"], 10)
hourstamp = config_earth.netcdf['hourstamp']
masses = [0, .25, .5, .75, 1, 1.25, 1.5, 1.75, 2]
color = cmap = cm.get_cmap('rainbow_r', len(masses))
plt.style.use('seaborn-darkgrid')
plt.rcParams.update({'font.size': 14})
fig, ax = plt.subplots(1, 1, figsize=(12,8))
for j in range(0,len(masses)):
print(colored("----------------------------------------------------------","magenta"))
#Reset Config Values
GMT = 7 # MST
coord = config_earth.simulation['start_coord']
t = config_earth.simulation['start_time']
start = t
lat = math.radians(coord['lat'])
Ls = t.timetuple().tm_yday
min_alt = config_earth.simulation['min_alt']
alt_sp = config_earth.simulation['alt_sp']
v_sp = config_earth.simulation['v_sp']
dt = config_earth.dt
atm = fluids.atmosphere.ATMOSPHERE_1976(min_alt)
GFSrate = config_earth.GFS['GFSrate']
# Variables for Simulation and Plotting
T_s = [atm.T]
T_i = [atm.T]
T_atm = [atm.T]
el = [min_alt]
v = [0.]
coords = [coord]
lat = [coord["lat"]]
lon = [coord["lon"]]
ttt = [t - pd.Timedelta(hours=GMT)] # Just for visualizing plot better]
data_loss = False
simulation_time = config_earth.simulation["sim_time"] * int(3600 * (1 / dt)) # seconds
burst = False
# Set new payload mass to simulate different float altitude
config_earth.balloon_properties['mp'] = masses[j]
e = solve_states.SolveStates()
descent = False
for i in range(0,simulation_time):
T_s_new,T_i_new,T_atm_new,el_new,v_new, q_rad, q_surf, q_int = e.solveVerticalTrajectory(t,T_s[i],T_i[i],el[i],v[i],coord,alt_sp,v_sp)
# Correct for the infrared affects with low masses
if v_new < -3.0 and el_new > 15000:
descent = True
if descent:
v_new = -3
el_new = el[i] + v_new * dt
if el_new < min_alt:
el_new = min_alt
v_new = 0
T_s.append(T_s_new)
T_i.append(T_i_new)
el.append(el_new)
v.append(v_new)
T_atm.append(T_atm_new)
t = t + pd.Timedelta(hours=(1/3600*dt))
ttt.append(t - pd.Timedelta(hours=GMT)) #Just for visualizing plot better
if i % GFSrate == 0:
lat_new,lon_new,x_wind_vel,y_wind_vel,bearing,nearest_lat, nearest_lon, nearest_alt = gfs.getNewCoord(coords[i],dt*GFSrate) #(coord["lat"],coord["lon"],0,0,0,0,0,0)
coord_new = {
"lat": lat_new, # (deg) Latitude
"lon": lon_new, # (deg) Longitude
"alt": el_new, # (m) Elevation
"timestamp": t, # Timestamp
}
coords.append(coord_new)
lat.append(lat_new)
lon.append(lon_new)
rad = radiation.Radiation()
zen = rad.get_zenith(t, coord_new)
if i % 360*(1/dt) == 0:
print(str(t - pd.Timedelta(hours=GMT)) #Just for visualizing better
+ " el " + str("{:.4f}".format(el_new))
+ " v " + str("{:.4f}".format(v_new))
#+ " accel " + str("{:.4f}".format(dzdotdt))
+ " T_s " + str("{:.4f}".format(T_s_new))
+ " T_i " + str("{:.4f}".format(T_i_new))
+ " zen " + str(math.degrees(zen))
)
print(colored(("U wind speed: " + str(x_wind_vel) + " V wind speed: " + str(y_wind_vel) + " Bearing: " + str(bearing)),"yellow"))
print(colored(("Lat: " + str(lat_new) + " Lon: " + str(lon_new)),"green"))
print(colored(("Nearest Lat: " + str(nearest_lat) + " Nearest Lon: " + str(nearest_lon) +
" Nearest Alt: " + str(nearest_alt)),"cyan"))
#Plots
plt.plot(ttt,el, mpl.colors.rgb2hex(color(j)))
# Google Plotting of Trajectory
gmap1.plot(lat, lon,mpl.colors.rgb2hex(color(j)), edge_width = 2.5)
# Plotting
plt.xlabel('Datetime (MST)')
plt.ylabel('Elevation (m)')
ax.get_xaxis().set_minor_locator(mpl.ticker.AutoMinorLocator())
ax.get_yaxis().set_minor_locator(mpl.ticker.AutoMinorLocator())
ax.grid(b=True, which='major', color='w', linewidth=1.0)
ax.grid(b=True, which='minor', color='w', linewidth=0.5)
region= zip(*[
(gfs.LAT_LOW, gfs.LON_LOW),
(gfs.LAT_HIGH, gfs.LON_LOW),
(gfs.LAT_HIGH, gfs.LON_HIGH),
(gfs.LAT_LOW, gfs.LON_HIGH)
])
gmap1.polygon(*region, color='cornflowerblue', edge_width=1, alpha= .2)
gmap1.draw("trajectories/" + str(t.year) + "_" + str(t.month) + "_" + str(start.day) + "_trajectories.html" )
plt.style.use('default')
hour_index, new_timestamp = windmap.getHourIndex(start, nc_start)
windmap.plotWindVelocity(hour_index,coord["lat"],coord["lon"])
windmap.plotTempAlt(hour_index,coord["lat"],coord["lon"])
plt.show()