-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
178 lines (135 loc) · 5.64 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
from PIL import Image
import numpy as np
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import matplotlib
import matplotlib.pyplot as plt
from pathlib import Path
import sys
import math
import itertools
from functools import partial
import mmcv
from mmcv.runner import load_checkpoint
from collections import defaultdict
import cv2
import requests
from torchvision import transforms
from dinov2.eval.depth.models import build_depther
import urllib
import json
import random
import argparse
class CenterPadding(torch.nn.Module):
def __init__(self, multiple):
super().__init__()
self.multiple = multiple
def _get_pad(self, size):
new_size = math.ceil(size / self.multiple) * self.multiple
pad_size = new_size - size
pad_size_left = pad_size // 2
pad_size_right = pad_size - pad_size_left
return pad_size_left, pad_size_right
@torch.inference_mode()
def forward(self, x):
pads = list(itertools.chain.from_iterable(self._get_pad(m) for m in x.shape[:1:-1]))
output = F.pad(x, pads)
return output
def create_depther(cfg, backbone_model, backbone_size, head_type):
train_cfg = cfg.get("train_cfg")
test_cfg = cfg.get("test_cfg")
depther = build_depther(cfg.model, train_cfg=train_cfg, test_cfg=test_cfg)
depther.backbone.forward = partial(
backbone_model.get_intermediate_layers,
n=cfg.model.backbone.out_indices,
reshape=True,
return_class_token=cfg.model.backbone.output_cls_token,
norm=cfg.model.backbone.final_norm,
)
if hasattr(backbone_model, "patch_size"):
depther.backbone.register_forward_pre_hook(lambda _, x: CenterPadding(backbone_model.patch_size)(x[0]))
return depther
def make_depth_transform() -> transforms.Compose:
return transforms.Compose([
transforms.ToTensor(),
lambda x: 255.0 * x[:3], # Discard alpha component and scale by 255
transforms.Normalize(
mean=(123.675, 116.28, 103.53),
std=(58.395, 57.12, 57.375),
),
])
def render_depth(values, colormap_name="magma_r") -> Image:
min_value, max_value = values.min(), values.max()
normalized_values = (values - min_value) / (max_value - min_value)
colormap = matplotlib.colormaps[colormap_name]
colors = colormap(normalized_values, bytes=True) # ((1)xhxwx4)
colors = colors[:, :, :3] # Discard alpha component
return Image.fromarray(colors)
def load_config_from_url(url: str) -> str:
with urllib.request.urlopen(url) as f:
return f.read().decode()
def load_backbone(backbone_size = "small"):
backbone_archs = {
"small": "vits14",
"base": "vitb14",
"large": "vitl14",
"giant": "vitg14",
}
backbone_arch = backbone_archs[backbone_size]
backbone_name = f"dinov2_{backbone_arch}"
backbone_model = torch.hub.load(repo_or_dir="facebookresearch/dinov2", model=backbone_name)
backbone_model.eval()
backbone_model.cuda()
return backbone_name, backbone_model
def load_dino_model(backbone_name, backbone_model, backbone_size = "small", head_dataset = "nyu", head_type = "dpt"):
DINOV2_BASE_URL = "https://dl.fbaipublicfiles.com/dinov2"
head_config_url = f"{DINOV2_BASE_URL}/{backbone_name}/{backbone_name}_{head_dataset}_{head_type}_config.py"
head_checkpoint_url = f"{DINOV2_BASE_URL}/{backbone_name}/{backbone_name}_{head_dataset}_{head_type}_head.pth"
cfg_str = load_config_from_url(head_config_url)
cfg = mmcv.Config.fromstring(cfg_str, file_format=".py")
model = create_depther(
cfg,
backbone_model=backbone_model,
backbone_size=backbone_size,
head_type=head_type,
)
load_checkpoint(model, head_checkpoint_url, map_location="cpu")
model.eval()
model.cuda()
return model
def enumerate_datasets(data_directory):
datasets = []
num_images_dataset = []
for dataset_dir, _, files in os.walk(data_directory):
if dataset_dir != data_directory:
dataset_name = os.path.basename(dataset_dir)
datasets.append(dataset_name)
image_count = sum(1 for file in files if file.endswith('.jpg'))
num_images_dataset.append(image_count)
num_images = sum(num_images_dataset)
return datasets, num_images_dataset, num_images
def load_training_logs(num_epochs, num_val_checkpoints, model_string):
original_train_file_path = './training_logs/original_mse_train_' + model_string + '.pt'
if os.path.exists(original_train_file_path):
original_mse_train = torch.load(original_train_file_path, weights_only=True)
else:
original_mse_train = torch.zeros(num_epochs)
updated_train_file_path = './training_logs/updated_mse_train_' + model_string + '.pt'
if os.path.exists(updated_train_file_path):
updated_mse_train = torch.load(updated_train_file_path, weights_only=True)
else:
updated_mse_train = torch.zeros(num_epochs)
original_val_file_path = './training_logs/original_mse_val_' + model_string + '.pt'
if os.path.exists(original_val_file_path):
original_mse_val = torch.load(original_val_file_path, weights_only=True)
else:
original_mse_val = torch.zeros(num_epochs, num_val_checkpoints + 1)
updated_val_file_path = './training_logs/updated_mse_val_' + model_string + '.pt'
if os.path.exists(updated_val_file_path):
updated_mse_val = torch.load(updated_val_file_path, weights_only=True)
else:
updated_mse_val = torch.zeros(num_epochs, num_val_checkpoints + 1)
return original_mse_train, updated_mse_train, original_mse_val, updated_mse_val