-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTwoLevelAlgorithm.tex
executable file
·32 lines (31 loc) · 1.48 KB
/
TwoLevelAlgorithm.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
We consider an approximate solution to \eqref{eqn:SQGEWF} by a two-level finite
element procedure \cite{Fairag98,Layton93}. Let $X^h,\, X^H \subset
H^2_0(\Omega)$ denote two conforming finite element spaces with $H \gg h$. We
compute an approximate solution $\psi^h$ in the finite element space $X^h$ by
solving a linear system for the degrees of freedom in $X^h$. This
linear system requires: first, the computation of the approximate solution $\psi^H$ to
the nonlinear system in the finite element space $X^H$, where the mesh is very
coarse, i.e. $H \gg h$, and then using this solution, $\psi^H$, to linearize the
problem on the fine mesh. This procedure is as follows:
\begin{algorithm}%[H]
\caption{}%Two-Level algorithm for the Streamfunction formulation of QGE}
\label{alg:TwoLevel}
\begin{enumerate}[Step 1:]
\item Solve the following nonlinear system on a coarse mesh for $\psi^H\in X^H$:
\begin{equation}
Re^{-1} (\Delta \psi^H, \Delta \chi^H)
+ b(\psi^H; \psi^H,\chi^H)
- Ro^{-1} (\psi_x^H,\chi^H)
= Ro^{-1} (F,\chi^H), \quad \text{for all } \chi^H \in X^H.
\label{eqn:Coarse}
\end{equation}
\item Solve the following linear system on a fine mesh for $\psi^h\in X^h$:
\begin{equation}
Re^{-1} (\Delta \psi^h, \Delta \chi^h)
+ b(\psi^H; \psi^h,\chi^h)
- Ro^{-1} (\psi_x^h,\chi^h)
= Ro^{-1} (F,\chi^h), \quad \text{for all } \chi^h \in X^h.
\label{eqn:Fine}
\end{equation}
\end{enumerate}
\end{algorithm}