-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQGE.SF.tex
executable file
·115 lines (114 loc) · 5.79 KB
/
QGE.SF.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
We are now ready to derive the strong formulation of the QGE in streamfunction
form, \eqref{eqn:QGE_psi}. To this end, it is necessary to introduce the
appropriate functional setting. Let $\psi$ be a unique solution \cite{Layton08}
of the QGE, \eqref{eqn:QGE_psi}, then
\begin{equation}
\psi \in L^{\infty}(0, T; L^2(\Omega)) \cap L^2(0, T;H^2_0(\Omega))
\label{eqn:StrongSpace}
\end{equation}
where
\begin{align*}
L^2(0, T;H^2_0(\Omega)) &:= \left\{ \psi(t,\mathbf{x}):[0, T] \to H^2_0(\Omega):
\int_{0}^{T}\! \|\Delta \psi\| \, dt < \infty \right\} \\
L^{\infty}(0, T;L^2(\Omega)) &:= \left\{ \psi(t,\mathbf{x}):[0, T] \to L^2(\Omega):
\ess \sup_{0<t<T} \|\psi\| < \infty\right\}.
\end{align*}
With the functional setting in place we can derive the strong formulaiton for
the QGE, \eqref{eqn:QGE_psi}.
Additionally, let
\begin{equation*}
X := H^2_0(\Omega) = \left\{ \psi\in H^2(\Omega): \psi=\frac{\partial\psi}{\partial {\bf n}}=0
\text{ on } \partial\Omega \right\}.
\end{equation*}
Then multiplying \eqref{eqn:QGE_psi} by a test function $\chi \in X$ and then
transferring some of the derivatives from $\psi$ to $\chi$ by use of the
divergence theorem , we get in a standard way the \emph{strong formulation} of
the QGE in streamfunction formulation:
\begin{equation*}
\int_{\Omega}\! \left(-\frac{\partial \left[ \Delta \psi \right]}{\partial t} + Re^{-1}
\Delta^2 \psi + J(\psi,\Delta \psi) - Ro^{-1}\frac{\partial \psi}{\partial
x}\right)\, \chi \, d\mathbf{x} = Ro^{-1} \int_{\Omega}\! F\, \chi \,
d\mathbf{x}.
\end{equation*}
We first rewrite the Jacobian term, from \eqref{eqn:QGE_psi} in a more useful
form
\begin{align*}
-\frac{\partial}{\partial t} \int_{\Omega}\! \Delta \psi \, \chi \, d\mathbf{x}
&+ Re^{-1} \int_{\Omega}\! \Delta^2 \psi\, \chi \, d\mathbf{x}
- \int_{\Omega}\! \left(\frac{\partial\left[\Delta\psi \right]}{\partial x}\, \frac{\partial
\psi}{\partial y} -
\frac{\partial\left[ \Delta\psi \right]}{\partial y}\,
\frac{\partial \psi}{\partial x}\right)\, \chi\, d\mathbf{x} \\
&- Ro^{-1} \int_{\Omega}\! \frac{\partial \psi}{\partial x}\, \chi \, d\mathbf{x}
= Ro^{-1} \int_{\Omega}\! F\, \chi \, d\mathbf{x},
\end{align*}
which yields the following equation:
\begin{equation*}
-\frac{\partial}{\partial t} \int_{\Omega}\! \Delta \psi \, \chi \, d\mathbf{x}
+ Re^{-1} \int_{\Omega}\! \Delta^2 \psi\, \chi \, d\mathbf{x}
- \int_{\Omega}\! \left(\nabla \left[\Delta\psi\right]\cdot \nabla \times
\psi \right)\, \chi\,
d\mathbf{x} -Ro^{-1} \int_{\Omega}\! \frac{\partial \psi}{\partial x}\,
\chi \, d\mathbf{x} = Ro^{-1} \int_{\Omega}\! F\, \chi \, d\mathbf{x}.
\end{equation*}
For the remaining portion of the strong formulation we shall deal with each
summand individually (from left to right) and so
\begin{align*}
-\frac{\partial}{\partial t} \int_{\Omega}\! \Delta \psi\, \chi \, d\mathbf{x} &=
-\frac{\partial}{\partial t} \int_{\Omega}\! \nabla \left( \nabla \psi \, \chi \right) -
\nabla \psi \cdot \nabla \chi \, d\mathbf{x} \\
&= -\frac{\partial}{\partial t} \cancelto{0}{\int_{\partial \Omega}\! \nabla \psi \, \chi
\cdot \mathbf{n} \, dS} + \frac{\partial}{\partial t} \int_{\Omega}\! \nabla
\psi\, \nabla \chi \, d\mathbf{x}.
\end{align*}
The next summand gives
\begin{align*}
Re^{-1}\int_{\Omega}\! \Delta^2 \psi\, \chi \, d\mathbf{x} &= Re^{-1}\int_{\Omega}\! \nabla\left[
\nabla^3 \psi \, \chi \right] + \nabla^3 \psi\, \nabla \chi \, d\mathbf{x} \\
&= Re^{-1}\cancelto{0}{\int_{\partial\Omega}\, \nabla^3 \psi\, \chi\cdot \mathbf{n}
\, dS} - Re^{-1}\int_{\Omega}\! \nabla\left[ \Delta\psi \nabla \chi \right] - \Delta
\psi \Delta \chi \, d\mathbf{x} \\
&= -Re^{-1} \cancelto{0}{\int_{\partial\Omega}\, \Delta\psi \nabla \chi \cdot
\mathbf{n}\, dS} + Re^{-1} \int_{\Omega} \Delta \psi \Delta \chi \,
d\mathbf{x}.
\end{align*}
For the third and final summand we have
\begin{align*}
-\int_{\Omega}\! \nabla\left[ \Delta\psi\right]\cdot
\nabla\times\psi \, \chi \, d\mathbf{x} &= -\int_{\Omega}\!
\nabla\left[\Delta\psi\right]\cdot \nabla\times\psi \, \chi\, d\mathbf{x}\\
&= -\int_{\Omega}\! \nabla\left[ \Delta\psi \cdot \nabla\times\psi\, \chi
\right] -\Delta\psi\, \cancelto{0}{\nabla\left[ \nabla\times\psi \chi
\right]} \\
&\qquad - \Delta\psi\, \nabla\times\psi \cdot \nabla\chi \, d\mathbf{x} \\
&= -\cancelto{0}{\int_{\partial\Omega}\, \Delta\psi \, \nabla\times\psi\, \chi
\cdot \mathbf{n} \, dS} \\
&\qquad + \int_{\Omega}\! \Delta \psi \, \nabla\times \psi \cdot
\nabla \chi \, d\mathbf{x} \\
&= \int_{\Omega}\! \Delta\psi\left( \psi_y\chi_x - \psi_x\chi_y \right)\, d\mathbf{x}.
\end{align*}
Thus, the weak form of the QGE in its streamfunction form is
\begin{eqnarray}
&& \frac{\partial}{\partial t} \int_{\Omega}\! \nabla \psi\, \nabla \chi \, d\mathbf{x}
+ Re^{-1} \, \int_{\Omega}\! \Delta \psi \, \Delta \chi \, d{\bf x} + \int_{\Omega}\! \Delta
\zeta \, \left( \psi_y \, \chi_x - \psi_x \, \chi_y \right)\, d{\bf x} - Ro^{-1} \, \int_{\Omega}
\, \psi_x \, \chi \, d{\bf x} \nonumber \\
&& \hspace*{3.0cm} = Ro^{-1}\, \int_{\Omega}\! F \, \chi \, d{\bf x} \qquad \forall \, \chi \in X .
\label{eqn:qge_psi_weak}
\end{eqnarray}
Therefore, taking $(\cdot,\cdot)$ to be the $L^2$ inner product and letting
\begin{equation}
b(\psi; \psi, \chi) = \int_{\Omega}\! \Delta \psi\, (\psi_y \chi_x - \psi_x
\chi_y)\, d\mathbf{x}
\label{eqn:b}
\end{equation}
gives the following strong formulation of the QGE in streamfunction formulation:
\begin{equation}
\begin{split}
\text{Find } \psi &\in X \text{ such that} \\
\frac{\partial}{\partial t} (\nabla \psi, \nabla \chi) + Re^{-1} (\Delta
\psi, \Delta \chi) +& b(\psi;\psi,\chi) - Ro^{-1}(\psi_x,\chi)
= Ro^{-1} (F,\chi),\quad \forall \chi \in X.
\end{split}
\label{eqn:QGEWF}
\end{equation}