-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpn2_main.py
executable file
·1065 lines (932 loc) · 49.1 KB
/
pn2_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 22 11:51:23 2022
@author: pnaddaf
"""
import sys
import os
import argparse
import numpy as np
import pickle
import random
import torch
import torch.nn.functional as F
import pyhocon
import dgl
import csv
from scipy import sparse
from dgl.nn.pytorch import GraphConv as GraphConv
import copy
from dataCenter import *
from utils import *
#from graph_samplers import *
from models import *
import plotter as plotter
import graph_statistics as GS
import pn2_helper as helper
import classification
import statistics
import warnings
from functools import partial
warnings.simplefilter('ignore')
# %% arg setup
##################################################################
parser = argparse.ArgumentParser(description='Inductive')
parser.add_argument('--dataSet', type=str, default='cora')
parser.add_argument('-e', dest="epoch_number", default=10, help="Number of Epochs")
parser.add_argument('-mask', dest="mask", default=0, help="mask with this value during testing")
parser.add_argument('--alpha', dest="alpha", default=0, help="alpha in objective function")
parser.add_argument('--encoder_type', dest="encoder_type", default="Multi_GIN",
help="the encoder type, Multi_GCN, Multi_GAT, Multi_GatedGraphConv, Multi_RelGraphConv")
parser.add_argument('--loss_type', dest="loss_type", default="8", help="type of combination between loss_A and loss_F")
parser.add_argument('--b', dest="b", default='1', help="boundry for hyperparametrs")
parser.add_argument('--c', dest="c", default='1', help="number of run")
parser.add_argument('--l', dest="l", default='1', help="percentage in test edges to mask")
parser.add_argument('--model', type=str, default='KDD')
parser.add_argument('--seed', type=int, default=123)
parser.add_argument('-num_node', dest="num_node", default=-1, type=str,
help="the size of subgraph which is sampled; -1 means use the whole graph")
parser.add_argument('--config', type=str, default='experiments.conf')
parser.add_argument('-decoder_type', dest="decoder_type", default="ML_SBM",
help="the decoder type, Either SBM or InnerDot or TransE or MapedInnerProduct_SBM or multi_inner_product and TransX or SBM_REL")
parser.add_argument('-f', dest="use_feature", default=True, help="either use features or identity matrix")
parser.add_argument('-NofRels', dest="num_of_relations", default=1,
help="Number of latent or known relation; number of deltas in SBM")
parser.add_argument('-NofCom', dest="num_of_comunities", default=128,
help="Number of comunites, tor latent space dimention; len(z)")
parser.add_argument('-BN', dest="batch_norm", default=True,
help="either use batch norm at decoder; only apply in multi relational decoders")
parser.add_argument('-DR', dest="DropOut_rate", default=.3, help="drop out rate")
parser.add_argument('-encoder_layers', dest="encoder_layers", default="64", type=str,
help="a list in which each element determine the size of gcn; Note: the last layer size is determine with -NofCom")
parser.add_argument('-lr', dest="lr", default=0.01, help="model learning rate")
parser.add_argument('-NSR', dest="negative_sampling_rate", default=1,
help="the rate of negative samples which should be used in each epoch; by default negative sampling wont use")
parser.add_argument('-v', dest="Vis_step", default=5, help="model learning rate")
parser.add_argument('-modelpath', dest="mpath", default="VGAE_FrameWork_MODEL", type=str,
help="The pass to save the learned model")
parser.add_argument('-Split', dest="split_the_data_to_train_test", default=True,
help="either use features or identity matrix; for synthasis data default is False")
parser.add_argument('-s', dest="save_embeddings_to_file", default=True, help="save the latent vector of nodes")
parser.add_argument('-CVAE_architecture', dest="CVAE_architecture", default='separate',
help="the possible values are sequential, separate, and transfer")
parser.add_argument('-is_prior', dest="is_prior", default=False, help="This flag is used for sampling methods")
parser.add_argument('-targets', dest="targets", default=[], help="This list is used for sampling")
parser.add_argument('--disjoint_transductive_inductive', dest="disjoint_transductive_inductive", default=True,
help="This flag is used if want to have dijoint transductive and inductive sets")
parser.add_argument('--sampling_method', dest="sampling_method", default="deterministic", help="This var shows sampling method it could be: monte, importance_sampling, deterministic, normalized ")
parser.add_argument('--method', dest="method", default="single", help="This var shows method it could be: multi, single, subgraph")
parser.add_argument('--query_type', dest="query_type", default="class", help="This var shows method it could be: link, node class, both")
args_kdd = parser.parse_args()
save_recons_adj_name = args_kdd.loss_type+args_kdd.encoder_type+"_"
mask = int(args_kdd.mask)
l = int(args_kdd.l)
disjoint_transductive_inductive = args_kdd.disjoint_transductive_inductive
if disjoint_transductive_inductive=="False":
disjoint_transductive_inductive = False
elif disjoint_transductive_inductive=="True":
disjoint_transductive_inductive = True
if disjoint_transductive_inductive:
save_recons_adj_name = save_recons_adj_name + args_kdd.sampling_method + "_fully_"
else:
save_recons_adj_name = save_recons_adj_name + args_kdd.sampling_method + "_semi_"
print("")
print("SETING: " + str(args_kdd))
pltr = plotter.Plotter(functions=["Accuracy", "loss", "AUC"])
if torch.cuda.is_available():
device_id = torch.cuda.current_device()
print('Using device', device_id, torch.cuda.get_device_name(device_id))
else:
device_id = 'cpu'
device = torch.device(device_id)
# %% load config
random.seed(args_kdd.seed)
np.random.seed(args_kdd.seed)
torch.manual_seed(args_kdd.seed)
torch.cuda.manual_seed_all(args_kdd.seed)
# load config file
config = pyhocon.ConfigFactory.parse_file(args_kdd.config)
# %% load data
ds = args_kdd.dataSet
dataCenter_kdd = DataCenter(config)
dataCenter_kdd.load_dataSet(ds, "KDD")
features_kdd = torch.FloatTensor(getattr(dataCenter_kdd, ds + '_feats')).to(device)
labels = torch.FloatTensor(getattr(dataCenter_kdd, ds + '_labels')).to(device)
adj_list = sparse.csr_matrix(getattr(dataCenter_kdd, ds + '_adj_lists'))
# %% train inductive_pn
inductive_pn, z_p = helper.train_PNModel(dataCenter_kdd, features_kdd,
args_kdd, device)
# Split A into test and train
trainId = getattr(dataCenter_kdd, ds + '_train')
testId = getattr(dataCenter_kdd, ds + '_test')
validId = getattr(dataCenter_kdd, ds + '_val')
labels = getattr(dataCenter_kdd, ds + '_labels')
adj_list = sparse.csr_matrix(getattr(dataCenter_kdd, ds + '_adj_lists'))
# test_edges_false, test_edges, train_edges_false, train_edges, val_edes_false, val_edges = mask_test_edges(adj_list,
# testId,
# trainId,
# validId)
auc_list_multi = []
val_acc_list_multi = []
val_ap_list_multi = []
precision_list_multi = []
recall_list_multi = []
CVAE_list_multi = []
HR_list_multi = []
CLL_list_multi = []
neighbour_prob_multi_link_list = []
auc_list_subgraph = []
val_acc_list_subgraph= []
val_ap_list_subgraph = []
precision_list_subgraph = []
recall_list_subgraph = []
CVAE_list_subgraph = []
HR_list_subgraph = []
CLL_list_subgraph = []
subgraph_prob_subgraph_link_list = []
auc_list_single = []
val_acc_list_single = []
val_ap_list_single = []
precision_list_single = []
recall_list_single = []
HR_list_single = []
CVAE_list_single = []
CLL_list_single = []
auc_list_feat_single = []
val_acc_list_feat_single = []
val_ap_list_feat_single = []
precision_list_feat_single = []
recall_list_feat_single = []
HR_list_feat_single = []
CVAE_list_feat_single = []
CLL_list_feat_single = []
auc_list_feat_multi = []
val_acc_list_feat_multi = []
val_ap_list_feat_multi = []
precision_list_feat_multi = []
recall_list_feat_multi = []
HR_list_feat_multi = []
CVAE_list_feat_multi = []
CLL_list_feat_multi = []
auc_list_feat_subgraph = []
val_acc_list_feat_subgraph = []
val_ap_list_feat_subgraph = []
precision_list_feat_subgraph = []
recall_list_feat_subgraph = []
HR_list_feat_subgraph = []
CVAE_list_feat_subgraph = []
CLL_list_feat_subgraph = []
auc_list_multi_single = []
val_acc_list_multi_single = []
val_ap_list_multi_single = []
precision_list_multi_single = []
recall_list_multi_single = []
HR_list_multi_single = []
CVAE_list_multi_single = []
CLL_list_multi_single = []
auc_list_labels_single = []
val_acc_list_labels_single = []
val_ap_list_labels_single = []
precision_list_labels_single = []
recall_list_labels_single = []
HR_list_labels_single = []
CVAE_list_labels_single = []
CLL_list_labels_single = []
auc_list_labels_multi = []
val_acc_list_labels_multi = []
val_ap_list_labels_multi = []
precision_list_labels_multi = []
recall_list_labels_multi = []
HR_list_labels_multi = []
CVAE_list_labels_multi = []
CLL_list_labels_multi = []
adj_list = sparse.csr_matrix(getattr(dataCenter_kdd, ds + '_adj_lists'))
features_kdd = torch.FloatTensor(getattr(dataCenter_kdd, ds + '_feats'))
org_adj = adj_list.toarray()
prior_only = False
method = args_kdd.method
if method=='multi':
single_link = False
multi_link = True
multi_single_link_bl = False
subgraph = False
elif method == 'single':
single_link = True
multi_link = False
multi_single_link_bl = False
subgraph = False
elif method == 'subgraph':
single_link = False
multi_link = False
multi_single_link_bl = False
subgraph = True
else:
single_link = False
multi_link = False
multi_single_link_bl = True
subgraph = False
if multi_link:
save_recons_adj_name = save_recons_adj_name + str(l)+"_"+'multi_'+ds
elif single_link:
save_recons_adj_name = save_recons_adj_name + str(l)+"_"+'single_'+ds
elif subgraph:
save_recons_adj_name = save_recons_adj_name + str(l)+"_"+'subgraph_' + ds
else:
save_recons_adj_name = save_recons_adj_name + str(l)+"_"+'multi_link_'+ds
query_type = args_kdd.query_type
pred_single_link = []
true_single_link = []
pred_feat_single_link = []
true_feat_single_link = []
target_feat_index_node = []
pred_multi_single_link = []
true_multi_single_link = []
pred_multi_link = []
true_multi_link = []
targets = []
sampling_method = args_kdd.sampling_method
if disjoint_transductive_inductive:
res = org_adj.nonzero()
index = np.where(np.isin(res[0], testId) & np.isin(res[1], trainId) | (
np.isin(res[1], testId) & np.isin(res[0], trainId))) # find edges that connect test to train
i_list = res[0][index]
j_list = res[1][index]
org_adj[i_list, j_list] = 0 # set all the in between edges to 0
# run recognition separately
std_z_recog, m_z_recog, z_recog, re_adj_recog, reconstructed_feat, reconstructed_labels = run_network(features_kdd, org_adj, labels, inductive_pn, targets, sampling_method,
is_prior=False)
re_adj_recog_sig = torch.sigmoid(re_adj_recog)
# run prior network separately
res = org_adj.nonzero()
index = np.where(np.isin(res[0], testId)) # only one node of the 2 ends of an edge needs to be in testId
idd_list = res[0][index]
neighbour_list = res[1][index]
sample_list = random.sample(range(0, len(idd_list)), 100)
false_multi_links_list = []
save_recons_adj_name = args_kdd.c+"_"+args_kdd.b + "_"+save_recons_adj_name
with open ('./results_csv/results_CLL.csv','w') as f:
wtr = csv.writer(f)
wtr.writerow(['','q'])
with open ('results_csv/loss_adj_train.csv', 'a') as f:
wtr = csv.writer(f)
wtr.writerow([save_recons_adj_name])
with open ('results_csv/loss_feat_train.csv', 'a') as f:
wtr = csv.writer(f)
wtr.writerow([save_recons_adj_name])
with open ('results_csv/loss_train.csv', 'a') as f:
wtr = csv.writer(f)
wtr.writerow([save_recons_adj_name])
with open ('results_csv/loss_val.csv', 'a') as f:
wtr = csv.writer(f)
wtr.writerow([save_recons_adj_name])
xx = 0
counter = 0
for i in sample_list:
print(xx)
xx +=1
save_recons_adj_name_i = save_recons_adj_name + '_' + str(i)
targets = []
target_feat_index_node = []
target_feat_node_id = []
target_feat_1 = []
target_feat_2 = []
idd = idd_list[i]
neighbour_id = neighbour_list[i]
adj_list_copy = copy.deepcopy(org_adj)
neigbour_prob_single = 1
if features_kdd[idd].nonzero().shape[0] > 0:
counter += 1
if single_link:
#print(idd, neighbour_id)
adj_list_copy = copy.deepcopy(org_adj)
feat_list_copy = copy.deepcopy(features_kdd)
if query_type == "link" or query_type == "both":
adj_list_copy[idd, neighbour_id] = 0 # find a test edge and set it to 0
adj_list_copy[neighbour_id, idd] = 0 # find a test edge and set it to 0
#setting feature to 0 and sampling equal number of 1s and 0s
# feat_ones = np.argwhere(feat_list_copy[idd] == 1).tolist()[0]
# target_feat_1.extend(feat_ones)
# feat_zero = np.argwhere(feat_list_copy[idd] == 0)
# zero_feat_index = np.random.choice(feat_zero[0], len(feat_list_copy[idd].nonzero())).tolist()
# target_feat_1.extend(zero_feat_index)
# feat_list_copy[idd, target_feat_1] = mask
# feat_list_copy[idd, target_feat_1] = feat_list_copy[idd, target_feat_1]
# target_feat_index_node.append(target_feat_1)
# target_feat_node_id.append(idd)
#second node of the edge
# feat_ones = np.argwhere(feat_list_copy[neighbour_id] == 1).tolist()[0]
# target_feat_2.extend(feat_ones)
# feat_zero = np.argwhere(feat_list_copy[neighbour_id] == 0)
# zero_feat_index = np.random.choice(feat_zero[0], len(feat_list_copy[neighbour_id].nonzero())).tolist()
# target_feat_2.extend(zero_feat_index)
# feat_list_copy[neighbour_id, target_feat_2] = mask
# feat_list_copy[neighbour_id, target_feat_2] =feat_list_copy[neighbour_id, target_feat_2]
# target_feat_index_node.append(target_feat_2)
# target_feat_node_id.append(neighbour_id)
#for important sampling and monte carlo
targets.append(idd)
targets.append(neighbour_id)
test_adj = torch.zeros(adj_list_copy.shape[0],adj_list_copy.shape[0])
std_z_prior, m_z_prior, z_prior, re_adj_prior, re_feat_prior, re_prior_labels = run_network(features_kdd, test_adj, labels, inductive_pn,
targets, sampling_method, is_prior=True)
if prior_only:
CVAE = CVAE_loss(m_z_prior, m_z_prior, std_z_prior, std_z_prior, re_adj_prior.detach().numpy(), org_adj,
idd, neighbour_id).detach().numpy()
else:
CVAE = CVAE_loss(m_z_recog, m_z_prior, std_z_recog, std_z_prior, re_adj_prior.detach().numpy(), org_adj,
idd, neighbour_id).detach().numpy()
CVAE_list_single.append(CVAE)
re_adj_prior_sig = torch.sigmoid(re_adj_prior)
re_feat_prior_sig = torch.sigmoid(re_feat_prior)
pred_single_link.append(re_adj_prior_sig[idd, neighbour_id].tolist())
true_single_link.append(org_adj[idd, neighbour_id].tolist())
# pred_single_link.append(re_adj_prior_sig[id_neg, neighbour_id_neg].tolist())
# true_single_link.append(org_adj[id_neg, neighbour_id_neg].tolist())
# true_feat_single_link.append(features_kdd[idd].tolist())
#torch.save(re_adj_prior, './output_csv/'+save_recons_adj_name+'/'+save_recons_adj_name_i+'.pt')
# auc_feat, val_acc_feat, val_ap_feat, precision_feat, recall_feat, HR_feat, CLL_feat = roc_auc_estimator_feat(target_feat_index_node, target_feat_node_id,
# re_feat_prior_sig,
# features_kdd)
auc_labels, val_acc_labels, val_ap_labels, precision_labels, recall_labels, HR_labels, CLL_labels = roc_auc_estimator_labels(targets, re_prior_labels, labels)
auc_list_labels_single.append(auc_labels)
val_acc_list_labels_single.append(val_acc_labels)
val_ap_list_labels_single.append(val_ap_labels)
precision_list_labels_single.append(precision_labels)
recall_list_labels_single.append(recall_labels)
HR_list_labels_single.append(HR_labels)
CLL_list_labels_single.append(CLL_labels)
# auc_list_feat_single.append(auc_feat)
# val_acc_list_feat_single.append(val_acc_feat)
# val_ap_list_feat_single.append(val_ap_feat)
# precision_list_feat_single.append(precision_feat)
# recall_list_feat_single.append(recall_feat)
# HR_list_feat_single.append(HR_feat)
# CLL_list_feat_single.append(CLL_feat)
if multi_link:
adj_list_copy = copy.deepcopy(org_adj)
feat_list_copy = copy.deepcopy(features_kdd)
adj_list_copy[idd, :] = 0 # set all the neigbours to 0
adj_list_copy[:, idd] = 0 # set all the neigbours to 0
true_multi_links = org_adj[idd].nonzero()
#selecting indexes from idd feature matrix and set them to 0
feat_ones = np.argwhere(feat_list_copy[idd] == 1).tolist()[0]
target_feat_1.extend(feat_ones)
target_feat_1.extend(feat_ones)
feat_zero = np.argwhere(feat_list_copy[idd] == 0)
zero_feat_index = np.random.choice(feat_zero[0], len(feat_list_copy[idd].nonzero())).tolist()
target_feat_1.extend(zero_feat_index)
feat_list_copy[idd] = mask
target_feat_index_node.append(target_feat_1)
target_feat_node_id.append(idd)
l = math.ceil(len(true_multi_links)/l)
for neighbour in true_multi_links[0][:l]:
feat_ones = np.argwhere(feat_list_copy[neighbour] == 1).tolist()[0]
target_feat_2.extend(feat_ones)
feat_zero = np.argwhere(feat_list_copy[neighbour] == 0)
zero_feat_index = np.random.choice(feat_zero[0],
len(feat_list_copy[neighbour].nonzero())).tolist()
target_feat_2.extend(zero_feat_index)
feat_list_copy[neighbour, target_feat_2] = mask
target_feat_index_node.append(target_feat_2)
target_feat_node_id.append(neighbour)
false_multi_link = np.array(random.sample(list(np.nonzero(org_adj[idd] == 0)[0]), len(true_multi_links[0])))
for j in list(false_multi_link)[:l]:
false_multi_links_list.append([idd, i])
adj_list_copy[j, idd] = 0
adj_list_copy[idd, j] = 0
feat_ones = np.argwhere(feat_list_copy[j] == 1).tolist()[0]
target_feat_2.extend(feat_ones)
feat_zero = np.argwhere(feat_list_copy[j] == 0)
zero_feat_index = np.random.choice(feat_zero[0],
len(feat_list_copy[j].nonzero())).tolist()
target_feat_2.extend(zero_feat_index)
feat_list_copy[j, target_feat_2] = 2
target_feat_index_node.append(target_feat_2)
target_feat_node_id.append(j)
target_list = [[idd, i] for i in list(true_multi_links[0])]
target_list.extend([[idd, i] for i in list(false_multi_link)])
targets = list(true_multi_links[0])
targets.extend(list(false_multi_link)) ################################ add back for importance sampling
targets.append(idd)
std_z_prior, m_z_prior, z_prior, re_adj_prior, re_feat_prior, re_labels_prior = run_network(feat_list_copy, adj_list_copy, labels, inductive_pn,
targets, sampling_method, is_prior=True)
if prior_only:
CVAE = CVAE_loss(m_z_prior, m_z_prior, std_z_prior, std_z_prior, re_adj_prior.detach().numpy(), org_adj,
idd, neighbour_id).detach().numpy()
else:
CVAE = CVAE_loss(m_z_recog, m_z_prior, std_z_recog, std_z_prior, re_adj_prior.detach().numpy(), org_adj,
idd, neighbour_id).detach().numpy()
CVAE_list_multi.append(CVAE)
re_feat_prior_sig = torch.sigmoid(re_feat_prior)
re_adj_prior_sig = torch.sigmoid(re_adj_prior)
target_list = np.array(target_list)
# pred_multi_link.extend(re_adj_prior_sig[target_list[:, 0], target_list[:, 1]].tolist())
# true_multi_link.extend(org_adj[target_list[:, 0], target_list[:, 1]].tolist())
auc_labels, val_acc_labels, val_ap_labels, precision_labels, recall_labels, HR_labels, CLL_labels = roc_auc_estimator_labels(
targets, re_labels_prior, labels)
auc_list_labels_multi.append(auc_labels)
val_acc_list_labels_multi.append(val_acc_labels)
val_ap_list_labels_multi.append(val_ap_labels)
precision_list_labels_multi.append(precision_labels)
recall_list_labels_multi.append(recall_labels)
HR_list_labels_multi.append(HR_labels)
CLL_list_labels_multi.append(CLL_labels)
auc, val_acc, val_ap, precision, recall, HR, CLL = get_metrices(target_list, org_adj, re_adj_prior)
auc_list_multi.append(auc)
val_acc_list_multi.append(val_acc)
val_ap_list_multi.append(val_ap)
precision_list_multi.append(precision)
recall_list_multi.append(recall)
HR_list_multi.append(HR)
CLL_list_multi = CLL
auc_feat, val_acc_feat, val_ap_feat, precision_feat, recall_feat, HR_feat, CLL_feat = roc_auc_estimator_feat(
target_feat_index_node, target_feat_node_id,
re_feat_prior_sig,
features_kdd)
auc_list_feat_multi.append(auc_feat)
val_acc_list_feat_multi.append(val_acc_feat)
val_ap_list_feat_multi.append(val_ap_feat)
precision_list_feat_multi.append(precision_feat)
recall_list_feat_multi.append(recall_feat)
HR_list_feat_multi.append(HR_feat)
CLL_list_feat_multi.append(CLL_feat)
# with open('./results_csv/results.csv', 'a', newline="\n") as f:
# writer = csv.writer(f)
# writer.writerow([save_recons_adj_name_i])
# writer.writerow([precision, recall, val_acc, val_ap, auc, CLL, HR])
#torch.save(re_adj_prior, './output_csv/'+save_recons_adj_name_i+'.pt')
# neighbour_prob_multi_link_list.append(get_neighbour_prob(re_adj_prior, idd, org_adj[idd].nonzero()[
# 0]).item()) # this function calculates the prob of all positive edges around idd node
if subgraph:
pos_edges, neg_edges, nodes = get_subgraph_random_walk(org_adj, idd, 4)
# print(idd, neighbour_id)
adj_list_copy = copy.deepcopy(org_adj)
feat_list_copy = copy.deepcopy(features_kdd)
for e in pos_edges:
adj_list_copy[e[0], e[1]] = 0
feat_ones = np.argwhere(feat_list_copy[idd] == 1).tolist()[0]
target_feat_1.extend(feat_ones)
target_feat_1.extend(feat_ones)
feat_zero = np.argwhere(feat_list_copy[idd] == 0)
zero_feat_index = np.random.choice(feat_zero[0], len(feat_list_copy[idd].nonzero())).tolist()
target_feat_1.extend(zero_feat_index)
feat_list_copy[idd] = mask
target_feat_index_node.append(target_feat_1)
target_feat_node_id.append(idd)
# setting feature to 0 and sampling equal number of 1s and 0s
l = (math.ceil(len(pos_edges)/l))
for neighbour in pos_edges[:l]:
feat_list_copy[neighbour[1]] = 0
feat_ones = np.argwhere(feat_list_copy[neighbour[1]] == 1).tolist()[0]
target_feat_2.extend(feat_ones)
feat_zero = np.argwhere(feat_list_copy[neighbour[1]] == 0)
zero_feat_index = np.random.choice(feat_zero[0],
len(feat_list_copy[neighbour].nonzero())).tolist()
target_feat_2.extend(zero_feat_index)
# feat_list_copy[neighbour, target_feat_2] = mask
target_feat_index_node.append(target_feat_2)
target_feat_node_id.append(neighbour[1])
for neighbour in neg_edges[:l]:
feat_list_copy[neighbour[1]] = 0
feat_ones = np.argwhere(feat_list_copy[neighbour[1]] == 1).tolist()[0]
target_feat_2.extend(feat_ones)
feat_zero = np.argwhere(feat_list_copy[neighbour[1]] == 0)
zero_feat_index = np.random.choice(feat_zero[0],
len(feat_list_copy[neighbour[1]].nonzero())).tolist()
target_feat_2.extend(zero_feat_index)
# feat_list_copy[neighbour[1], target_feat_2] = mask
target_feat_index_node.append(target_feat_2)
target_feat_node_id.append(neighbour[1])
# target_feat_node_id.append(neighbour_id)
target_list = copy.deepcopy(pos_edges)
target_list.extend(neg_edges)
# for important sampling and monte carlo
targets.append(nodes)
std_z_prior, m_z_prior, z_prior, re_adj_prior, re_feat_prior = run_network(feat_list_copy, adj_list_copy,
inductive_pn,
targets[0], sampling_method,
is_prior=True)
if prior_only:
CVAE = CVAE_loss(m_z_prior, m_z_prior, std_z_prior, std_z_prior, re_adj_prior.detach().numpy(), org_adj,
idd, neighbour_id).detach().numpy()
else:
CVAE = CVAE_loss(m_z_recog, m_z_prior, std_z_recog, std_z_prior, re_adj_prior.detach().numpy(), org_adj,
idd, neighbour_id).detach().numpy()
CVAE_list_subgraph.append(CVAE)
re_feat_prior_sig = torch.sigmoid(re_feat_prior)
re_adj_prior_sig = torch.sigmoid(re_adj_prior)
target_list = np.array(target_list)
# pred_multi_link.extend(re_adj_prior_sig[target_list[:, 0], target_list[:, 1]].tolist())
# true_multi_link.extend(org_adj[target_list[:, 0], target_list[:, 1]].tolist())
auc, val_acc, val_ap, precision, recall, HR, CLL = get_metrices(target_list, org_adj, re_adj_prior)
auc_list_subgraph.append(auc)
val_acc_list_subgraph.append(val_acc)
val_ap_list_subgraph.append(val_ap)
precision_list_subgraph.append(precision)
recall_list_subgraph.append(recall)
HR_list_subgraph.append(HR)
CLL_list_subgraph = CLL
auc_feat, val_acc_feat, val_ap_feat, precision_feat, recall_feat, HR_feat, CLL_feat = roc_auc_estimator_feat(
target_feat_index_node, target_feat_node_id,
re_feat_prior_sig,
features_kdd)
auc_list_feat_subgraph.append(auc_feat)
val_acc_list_feat_subgraph.append(val_acc_feat)
val_ap_list_feat_subgraph.append(val_ap_feat)
precision_list_feat_subgraph.append(precision_feat)
recall_list_feat_subgraph.append(recall_feat)
HR_list_feat_subgraph.append(HR_feat)
CLL_list_feat_subgraph.append(CLL_feat)
if multi_single_link_bl:
for nn in org_adj[idd].nonzero()[0]:
adj_list_copy = copy.deepcopy(org_adj)
# set all the neighbours expect the test one to 0 for recognition network
adj_list_copy, false_count = get_single_link_evidence(adj_list_copy, idd,
np.delete(adj_list_copy[idd].nonzero()[0],
np.where(adj_list_copy[idd].nonzero()[
0] == nn)))
std_z_recog, m_z_recog, z_recog, re_adj_recog, reconstructed_feat = run_network(features_kdd, adj_list_copy, inductive_pn,
targets, sampling_method,
is_prior=False)
adj_list_copy[idd, nn] = 0 # find a test edge and set it to 0
adj_list_copy[nn, idd] = 0 # find a test edge and set it to 0
targets.append(idd)
targets.append(nn)
std_z_prior, m_z_prior, z_prior, re_adj_prior, reconstructed_feat = run_network(features_kdd, adj_list_copy, inductive_pn,
targets, sampling_method, is_prior=True)
if prior_only:
CVAE = CVAE_loss(m_z_prior, m_z_prior, std_z_prior, std_z_prior, re_adj_prior.detach().numpy(),
org_adj, idd, neighbour_id).detach().numpy()
else:
CVAE = CVAE_loss(m_z_recog, m_z_prior, std_z_recog, std_z_prior, re_adj_prior.detach().numpy(),
org_adj, idd, neighbour_id).detach().numpy()
CVAE_list_multi_single.append(CVAE)
re_adj_prior_sig = torch.sigmoid(re_adj_prior)
pred_multi_single_link.append(re_adj_prior_sig[idd, nn].tolist())
true_multi_single_link.append(org_adj[idd, nn].tolist())
# Get false edges
std_z_recog, m_z_recog, z_recog, re_adj_recog, reconstructed_feat = run_network(features_kdd, org_adj, inductive_pn, targets,
sampling_method, is_prior=False)
re_adj_recog_sig = torch.sigmoid(re_adj_recog)
res = np.argwhere(org_adj[idd] == 0)
np.random.shuffle(res)
index = np.where(np.isin(res[:, 0], testId)) # only one node of the 2 ends of an edge needs to be in testId
test_neg_edges = res[index]
true_multi_single_link.extend(
org_adj[test_neg_edges[:false_count, 0], test_neg_edges[:false_count, 1]].tolist())
auc, val_acc, val_ap, conf_mtrx, precision, recall, HR, CLL = roc_auc_single(pred_multi_single_link,
true_multi_single_link)
auc_list_multi_single.append(auc)
val_acc_list_multi_single.append(val_acc)
val_ap_list_multi_single.append(val_ap)
precision_list_multi_single.append(precision)
recall_list_multi_single.append(recall)
HR_list_multi_single.append(HR)
CLL_list_multi.append(CLL)
# if single_link:
# # false_count = len(pred_single_link)
# # res = np.argwhere(org_adj == 0)
# # np.random.shuffle(res)
# # index = np.where(np.isin(res[:, 0], testId)) # only one node of the 2 ends of an edge needs to be in testId
# # test_neg_edges = res[index]
# #
# # for test_neg_edge in test_neg_edges[:false_count]:
# # targets = []
# # idd = test_neg_edge[0]
# # neighbour_id = test_neg_edge[1]
# # adj_list_copy = copy.deepcopy(org_adj)
# # adj_list_copy[idd, neighbour_id] = 0
# # adj_list_copy[neighbour_id, idd] = 0
# #
# # targets.append(idd)
# # targets.append(neighbour_id)
# #
# # std_z_prior, m_z_prior, z_prior, re_adj_prior, reconstructed_feat = run_network(features_kdd, adj_list_copy, inductive_pn,
# # targets, sampling_method, is_prior=True)
# # re_adj_prior_sig = torch.sigmoid(re_adj_prior)
# # pred_single_link.append(re_adj_prior_sig[idd, neighbour_id].tolist())
# # true_single_link.append(org_adj[idd, neighbour_id].tolist())
# #
# #
# #
# #
# # auc, val_acc, val_ap, precision, recall, HR, CLL = roc_auc_single(pred_single_link, true_single_link)
# # auc_list_single.append(auc)
# # val_acc_list_single.append(val_acc)
# # val_ap_list_single.append(val_ap)
# # precision_list_single.append(precision)
# # recall_list_single.append(recall)
# # HR_list_single.append(HR)
# # CLL_list_single.append(CLL)
# false_count = len(pred_single_link)
# res = np.argwhere(org_adj == 0)
# np.random.shuffle(res)
# index = np.where(np.isin(res[:, 0], testId)) # only one node of the 2 ends of an edge needs to be in testId
# test_neg_edges = res[index]
# re_adj_recog_sig = torch.sigmoid(re_adj_recog)
# #adding feature prediction
# neg_edges = test_neg_edges[:false_count]
# counter = 100
# for idd, neighbour_id in neg_edges:
# print(counter)
# counter += 1
# adj_list_copy = copy.deepcopy(org_adj)
# feat_list_copy = copy.deepcopy(features_kdd)
#
# # setting feature to 0 and sampling equal number of 1s and 0s
# feat_ones = np.argwhere(feat_list_copy[idd] == 1).tolist()[0]
# target_feat_1.extend(feat_ones)
# feat_zero = np.argwhere(feat_list_copy[idd] == 0)
# zero_feat_index = np.random.choice(feat_zero[0], len(feat_list_copy[idd].nonzero())).tolist()
# target_feat_1.extend(zero_feat_index)
# feat_list_copy[idd, target_feat_1] = mask
#
#
# target_feat_index_node.append(target_feat_1)
# target_feat_node_id.append(idd)
#
# #for the second node of the edge
#
# feat_ones = np.argwhere(feat_list_copy[neighbour_id] == 1).tolist()[0]
# target_feat_2.extend(feat_ones)
# feat_zero = np.argwhere(feat_list_copy[neighbour_id] == 0)
# zero_feat_index = np.random.choice(feat_zero[0], len(feat_list_copy[neighbour_id].nonzero())).tolist()
# target_feat_2.extend(zero_feat_index)
# feat_list_copy[neighbour_id, target_feat_2] = mask
# target_feat_index_node.append(target_feat_2)
#
# target_feat_node_id.append(neighbour_id)
#
# # end of setting features to 0
#
# #for important sampling
# targets.append(idd)
# targets.append(neighbour_id)
# std_z_prior, m_z_prior, z_prior, re_adj_prior, re_feat_prior, re_prior_labels = run_network(feat_list_copy, adj_list_copy, labels,
# inductive_pn,
# targets, sampling_method,
# is_prior=True)
# re_adj_prior_sig = torch.sigmoid(re_adj_prior)
# re_feat_prior_sig = torch.sigmoid(re_feat_prior)
# pred_single_link.append(re_adj_prior_sig[idd, neighbour_id].tolist())
# true_single_link.append(org_adj[idd, neighbour_id].tolist())
#
# auc_feat, val_acc_feat, val_ap_feat, precision_feat, recall_feat, HR_feat, CLL_feat = roc_auc_estimator_feat(
# target_feat_index_node, target_feat_node_id,
# re_feat_prior_sig,
# features_kdd)
#
# auc_labels, val_acc_labels, val_ap_labels, precision_labels, recall_labels, HR_labels, CLL_labels = roc_auc_estimator_labels(
# targets, re_prior_labels, labels)
#
# auc_list_labels_single.append(auc_labels)
# val_acc_list_labels_single.append(val_acc_labels)
# val_ap_list_labels_single.append(val_ap_labels)
# precision_list_labels_single.append(precision_labels)
# recall_list_labels_single.append(recall_labels)
# HR_list_labels_single.append(HR_labels)
# CLL_list_labels_single.append(CLL_labels)
#
#
# auc_list_feat_single.append(auc_feat)
# val_acc_list_feat_single.append(val_acc_feat)
# val_ap_list_feat_single.append(val_ap_feat)
# precision_list_feat_single.append(precision_feat)
# recall_list_feat_single.append(recall_feat)
# HR_list_feat_single.append(HR_feat)
# CLL_list_feat_single.append(CLL_feat)
#
# #end of feature predictoin
#
#
# auc, val_acc, val_ap, precision, recall, HR, CLL = roc_auc_single(pred_single_link, true_single_link)
# # auc_feat, val_acc_feat, val_ap_feat, precision_feat, recall_feat, HR_feat, CLL_feat = get_metrices(target_feat, pred_feat_single_link, true_feat_single_link)
# auc_list_single.append(auc)
# val_acc_list_single.append(val_acc)
# val_ap_list_single.append(val_ap)
# precision_list_single.append(precision)
# recall_list_single.append(recall)
# HR_list_single.append(HR)
# CLL_list_single.append(CLL)
# only use for A0, A1
# if multi_link:
# for false_multi_links in false_multi_links_list:
# adj_list_copy = copy.deepcopy(org_adj)
# targets = []
#
# # adj_list_copy[false_multi_links[:, 0], false_multi_links[:, 1]] = 1
# # adj_list_copy[false_multi_links[:, 1], false_multi_links[:, 0]] = 1
# # targets = false_multi_links[:, 1].tolist()
# # targets.append(false_multi_links[0][0])
#
# for false_multi_link in false_multi_links:
# idd = false_multi_link[0]
# neighbour_id = false_multi_link[1]
# adj_list_copy[idd, neighbour_id] = 1
# adj_list_copy[neighbour_id, idd] = 1
# targets.append(neighbour_id)
# targets.append(idd)
#
# std_z_recog, m_z_recog, z_recog, re_adj_recog = run_network(features_kdd, adj_list_copy, inductive_pn,
# [],
# is_prior=False)
#
# std_z_prior, m_z_prior, z_prior, re_adj_prior = run_network(features_kdd, org_adj, inductive_pn, targets,
# is_prior=True)
#
# re_adj_prior_sig = torch.sigmoid(re_adj_prior)
#
# false_multi_links = np.array(false_multi_links)
# pred_multi_link.extend(re_adj_prior_sig[false_multi_links[:, 0], false_multi_links[:, 1]].tolist())
# true_multi_link.extend(org_adj[false_multi_links[:, 0], false_multi_links[:, 1]].tolist())
#
# auc, val_acc, val_ap, precision, recall, HR = roc_auc_single(pred_multi_link, true_multi_link)
# auc_list_multi.append(auc)
# val_acc_list_multi.append(val_acc)
# val_ap_list_multi.append(val_ap)
# precision_list_multi.append(precision)
# recall_list_multi.append(recall)
# HR_list_multi.append(HR)
if single_link:
auc, val_acc, val_ap, precision, recall, HR, CLL = roc_auc_single(pred_single_link, true_single_link)
auc_list_single.append(auc)
val_acc_list_single.append(val_acc)
val_ap_list_single.append(val_ap)
precision_list_single.append(precision)
recall_list_single.append(recall)
HR_list_single.append(HR)
CLL_list_single.append(CLL)
# Print results
print(save_recons_adj_name)
if multi_link:
auc_mean_multi = statistics.mean(auc_list_multi)
val_acc_mean_multi = statistics.mean(val_acc_list_multi)
val_ap_mean_multi = statistics.mean(val_ap_list_multi)
precision_mean_multi = statistics.mean(precision_list_multi)
recall_mean_multi = statistics.mean(recall_list_multi)
HR_mean_multi = statistics.mean(HR_list_multi)
CLL_mean_multi = statistics.mean(CLL_list_multi)
auc_mean_feat_multi = statistics.mean(auc_list_feat_multi)
val_acc_mean_feat_multi = statistics.mean(val_acc_list_feat_multi)
val_ap_mean_feat_multi = statistics.mean(val_ap_list_feat_multi)
precision_mean_feat_multi = statistics.mean(precision_list_feat_multi)
recall_mean_feat_multi = statistics.mean(recall_list_feat_multi)
HR_mean_feat_multi = statistics.mean(HR_list_feat_multi)
# CLL_mean_feat_multi = statistics.mean(CLL_list_feat_multi)
CLL_mean_feat_multi = 0
auc_mean_labels_multi = statistics.mean(auc_list_labels_multi)
val_acc_mean_labels_multi = statistics.mean(val_acc_list_labels_multi)
val_ap_mean_labels_multi = statistics.mean(val_ap_list_labels_multi)
precision_mean_labels_multi = statistics.mean(precision_list_labels_multi)
recall_mean_labels_multi = statistics.mean(recall_list_labels_multi)
HR_mean_labels_multi = statistics.mean(HR_list_labels_multi)
CLL_mean_labels_multi = 0
with open('./results_csv/results.csv', 'a', newline="\n") as f:
writer = csv.writer(f)
writer.writerow(
[save_recons_adj_name, auc_mean_multi, val_acc_mean_multi, val_ap_mean_multi, precision_mean_multi,
recall_mean_multi, HR_mean_multi, CLL_mean_multi])
with open('./results_csv/results.csv', 'a', newline="\n") as f:
writer = csv.writer(f)
writer.writerow(
["feat_" + save_recons_adj_name, auc_mean_feat_multi, val_acc_mean_feat_multi, val_ap_mean_feat_multi,
precision_mean_feat_multi, recall_mean_feat_multi, HR_mean_feat_multi, CLL_mean_feat_multi])
with open('./results_csv/results.csv', 'a', newline="\n") as f:
writer = csv.writer(f)
writer.writerow(["labels_" + save_recons_adj_name, auc_mean_labels_multi, val_acc_mean_labels_multi,
val_ap_mean_labels_multi,
precision_mean_labels_multi, recall_mean_labels_multi, HR_mean_labels_multi,
CLL_mean_labels_multi])
print("multi link")
print("link prediction:")
print("auc: ", auc_mean_multi)
print("acc", val_acc_mean_multi)
print("ap: ", val_ap_mean_multi)
print("precision", precision_mean_multi)
print("recall", recall_mean_multi)
print("HR", HR_mean_multi)
print("CLL", CLL_mean_multi)
print("feature prediction:")
print("auc: ", auc_mean_feat_multi)
print("acc", val_acc_mean_feat_multi)
print("ap: ", val_ap_mean_feat_multi)
print("precision", precision_mean_feat_multi)
print("recall", recall_mean_feat_multi)
print("HR", HR_mean_feat_multi)
print("CLL", CLL_mean_feat_multi)
print("node classification:")
print("auc: ", auc_mean_labels_multi)
print("acc", val_acc_mean_labels_multi)
print("ap: ", val_ap_mean_labels_multi)
print("precision", precision_mean_labels_multi)
print("recall", recall_mean_labels_multi)
print("HR", HR_mean_labels_multi)
print("CLL", CLL_mean_labels_multi)
if subgraph:
auc_mean_subgraph = statistics.mean(auc_list_subgraph)
val_acc_mean_subgraph = statistics.mean(val_acc_list_subgraph)
val_ap_mean_subgraph = statistics.mean(val_ap_list_subgraph)
precision_mean_subgraph = statistics.mean(precision_list_subgraph)
recall_mean_subgraph = statistics.mean(recall_list_subgraph)
HR_mean_subgraph= statistics.mean(HR_list_subgraph)
CLL_mean_subgraph = statistics.mean(CLL_list_subgraph)
auc_mean_feat_subgraph = statistics.mean(auc_list_feat_subgraph)
val_acc_mean_feat_subgraph = statistics.mean(val_acc_list_feat_subgraph)
val_ap_mean_feat_subgraph = statistics.mean(val_ap_list_feat_subgraph)
precision_mean_feat_subgraph = statistics.mean(precision_list_feat_subgraph)
recall_mean_feat_subgraph= statistics.mean(recall_list_feat_subgraph)
HR_mean_feat_subgraph= statistics.mean(HR_list_feat_subgraph)
# CLL_mean_feat_subgraph = statistics.mean(CLL_list_feat_subgraph)
CLL_mean_feat_subgraph = 0
with open('./results_csv/results.csv', 'a', newline="\n") as f:
writer = csv.writer(f)
# writer.writerow([save_recons_adj_name,"","","","","",""])
writer.writerow([save_recons_adj_name, auc_mean_subgraph, val_acc_mean_subgraph, val_ap_mean_subgraph, precision_mean_subgraph, recall_mean_subgraph, HR_mean_subgraph, CLL_mean_subgraph])
writer.writerow(["feat_"+save_recons_adj_name, auc_mean_feat_subgraph, val_acc_mean_feat_subgraph, val_ap_mean_feat_subgraph, precision_mean_feat_subgraph,
recall_mean_feat_subgraph, HR_mean_feat_subgraph, CLL_mean_feat_subgraph])
print("subgraph")
print("link prediction:")
print("auc: ", auc_mean_subgraph)
print("acc", val_acc_mean_subgraph)
print("ap: ", val_ap_mean_subgraph)
print("precision", precision_mean_subgraph)
print("recall", recall_mean_subgraph)
print("HR", HR_mean_subgraph)
print("CLL", CLL_mean_subgraph)
print("feature prediction:")
print("auc: ", auc_mean_feat_subgraph)
print("acc", val_acc_mean_feat_subgraph)
print("ap: ", val_ap_mean_feat_subgraph)
print("precision", precision_mean_feat_subgraph)
print("recall", recall_mean_feat_subgraph)
print("HR", HR_mean_feat_subgraph)
print("CLL", CLL_mean_feat_subgraph)
if multi_single_link_bl:
auc_mean_multi_single = statistics.mean(auc_list_multi_single)
val_acc_mean_multi_single = statistics.mean(val_acc_list_multi_single)
val_ap_mean_multi_single = statistics.mean(val_ap_list_multi_single)
precision_mean_multi_single = statistics.mean(precision_list_multi_single)
recall_mean_multi_single = statistics.mean(recall_list_multi_single)
HR_mean_multi_single = statistics.mean(HR_list_multi_single)
CLL_mean_multi_single = np.mean(CLL_list_multi_single)
print("multi link")
print("auc: ", auc_mean_multi_single)
print("acc", val_acc_mean_multi_single)