-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathfetch-de-mortality.py
executable file
·267 lines (215 loc) · 8.48 KB
/
fetch-de-mortality.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#!/usr/bin/env python3.10
# by Dr. Torben Menke https://entorb.net
# https://github.com/entorb/COVID-19-Coronavirus-German-Regions
"""
fetches mortality data from Destatis
see https://www.destatis.de/DE/Themen/Querschnitt/Corona/Gesellschaft/bevoelkerung-sterbefaelle.html
data: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Sterbefaelle-Lebenserwartung/Tabellen/sonderauswertung-sterbefaelle.html;jsessionid=3B59CB1FA0C08C059243535606A41FBF.internet8721
"""
import datetime as dt
import openpyxl
import pandas as pd
import helper
# 1. read and prepare my covid data
def prepare_covid_data() -> pd.DataFrame:
"""
read my covid deaths data
remove 29.2. (Schaltjahre)
returns a df having the day as index in format "dd.mm."
"""
df = pd.read_csv(
"data/de-states/de-state-DE-total.tsv",
sep="\t",
usecols=[
"Date",
"Deaths_New",
],
parse_dates=[
"Date",
],
index_col="Date",
)
df = df.rename(columns={"Deaths_New": "Deaths_Covid"}, errors="raise")
assert df.index[0] == pd.to_datetime(
"2020-01-02",
), f"Error of start date, expecting 2020-01-02, got : {df.index[0]}"
# add dummy row for missing 1.1.2020
df.loc[pd.to_datetime("2020-01-01")] = 0
df = df.sort_index() # sorting by index
# drop deaths of last 4 weeks, as they are not final yet
date_4w = dt.date.today() - dt.timedelta(weeks=4)
df = df[df.index < pd.to_datetime(date_4w)]
del date_4w
# add day in format 01.03.
df["Day"] = df.index.strftime("%d.%m.")
# rolling average
df = helper.pandas_calc_roll_av(df=df, column="Deaths_Covid", days=7)
# remove 29.2. (Schaltjahre) (after calc of rolling av)
df = df[df["Day"] != "29.02."]
# one df per year
df_covid_2020 = (
df[df.index.year == 2020][["Day", "Deaths_Covid", "Deaths_Covid_roll_av"]]
.reset_index(drop=True)
.rename(
columns={
"Deaths_Covid": "Deaths_Covid_2020",
"Deaths_Covid_roll_av": "Deaths_Covid_2020_roll_av",
},
errors="raise",
)
)
df_covid_2020.set_index("Day", inplace=True)
df_covid_2021 = (
df[df.index.year == 2021][["Day", "Deaths_Covid", "Deaths_Covid_roll_av"]]
.reset_index(drop=True)
.rename(
columns={
"Deaths_Covid": "Deaths_Covid_2021",
"Deaths_Covid_roll_av": "Deaths_Covid_2021_roll_av",
},
errors="raise",
)
)
df_covid_2021.set_index("Day", inplace=True)
df_covid_2022 = (
df[df.index.year == 2022][["Day", "Deaths_Covid", "Deaths_Covid_roll_av"]]
.reset_index(drop=True)
.rename(
columns={
"Deaths_Covid": "Deaths_Covid_2022",
"Deaths_Covid_roll_av": "Deaths_Covid_2022_roll_av",
},
errors="raise",
)
)
df_covid_2022.set_index("Day", inplace=True)
df_covid_2023 = (
df[df.index.year == 2023][["Day", "Deaths_Covid", "Deaths_Covid_roll_av"]]
.reset_index(drop=True)
.rename(
columns={
"Deaths_Covid": "Deaths_Covid_2023",
"Deaths_Covid_roll_av": "Deaths_Covid_2023_roll_av",
},
errors="raise",
)
)
df_covid_2023.set_index("Day", inplace=True)
# join in index = Day
df_covid = df_covid_2020.join(df_covid_2021).join(df_covid_2022).join(df_covid_2023)
return df_covid
def convert2date(year: int, ddmm: str) -> dt.date:
# test: print(convert2date(year=2016, ddmm="01.01"))
d, m, _ = ddmm.split(".")
date = dt.date(int(year), int(m), int(d))
return date
def fetch_and_prepare_mortality_data_timeseries() -> pd.DataFrame:
"""
fetch and parse Excel of mortality data from Destatis
"""
excelFile = "cache/de-mortality.xlsx"
# as file is stored in cache folder which is not part of the commit, we can use the caching here
helper.download_from_url_if_old(
url="https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Sterbefaelle-Lebenserwartung/Tabellen/sonderauswertung-sterbefaelle.xlsx?__blob=publicationFile",
# url="https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Sterbefaelle-Lebenserwartung/Tabellen/sonderauswertung-sterbefaelle.xlsx;jsessionid=FB723BC229CAC6B6302FF752CC66DE7C.live742?__blob=publicationFile",
file_local=excelFile,
max_age=3600,
verbose=True,
)
# if not helper.check_cache_file_available_and_recent(
# fname=excelFile,
# max_age=1800,
# verbose=False, # as file is stored in cache folder which is not part of the commit, we can use the caching here
# ):
# url = "https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Sterbefaelle-Lebenserwartung/Tabellen/sonderauswertung-sterbefaelle.xlsx?__blob=publicationFile"
# filedata = urllib.request.urlopen(url)
# datatowrite = filedata.read()
# with open(excelFile, mode="wb") as f:
# f.write(datatowrite)
# data_only : read values instead of formulas
workbookIn = openpyxl.load_workbook(
excelFile,
data_only=True,
# read_only=True, # suppresses: UserWarning: wmf image format is not supported so the image is being dropped, but results in endless runtime
)
sheetIn = workbookIn["D_2016_2023_Tage"]
# 1. time series for correct rolling av calc
# 1.1 read from Excel
l_timeseries = []
col = 1
for row in range(17, 10 - 1, -1):
year = int(sheetIn.cell(column=col, row=row).value)
assert year >= 2016
assert year <= 2028
for col2 in range(2, 368):
day_str = str(sheetIn.cell(column=col2, row=9).value)
deaths = sheetIn.cell(column=col2, row=row).value
if deaths in (
"X", # 29.2. and not "Schaltjahr"
None, # blank
):
continue
# print(f"'{value}'")
date = convert2date(year=year, ddmm=day_str)
l_timeseries.append((date, deaths)) # day_str = dd.mm.
df = pd.DataFrame(
data=l_timeseries,
columns=[
"Date",
"Deaths",
],
)
df = helper.pandas_set_date_index(df=df, date_column="Date")
# assert that we start with 1.1.2016
assert df.index[0] == pd.to_datetime("2016-01-01")
df = helper.pandas_calc_roll_av(df=df, column="Deaths", days=7)
df[["Deaths", "Deaths_roll_av"]].to_csv(
"data/ts-de-mortality.tsv",
sep="\t",
lineterminator="\n",
)
return df
def merge_mortality_data_per_day(df: pd.DataFrame) -> pd.DataFrame:
"""
convert mortalitiy timeseries to format: day_str , 2016, 2017,...
"""
# add day column in format 01.03.
df["Day"] = df.index.strftime("%d.%m.")
# remove 29.2. (Schaltjahre) (after calc of rolling av in timeseries)
df = df[~(df["Day"] == "29.02.")]
l_days = df[df.index.year == 2016]["Day"].tolist()
assert len(l_days) == 365
# create new empty df
df2 = pd.DataFrame()
# (index=l_days, data={})
# add full year data of columns Deaths and Deaths_roll_av
for year in range(2016, 2022 + 1, 1):
df2[str(year)] = df[df.index.year == year]["Deaths"].tolist()
df2[str(year) + "_roll_av"] = df[df.index.year == year][
"Deaths_roll_av"
].tolist()
del year
# add current year
df2["2023"] = pd.Series(df[df.index.year == 2023]["Deaths"].tolist())
df2["2023_roll_av"] = pd.Series(
df[df.index.year == 2023]["Deaths_roll_av"].tolist(),
)
# setting the index to the Day
df2.index = l_days
df2.index.name = "Day"
# calculations
df2["2016_2019_mean"] = df2[["2016", "2017", "2018", "2019"]].mean(axis=1)
df2 = helper.pandas_calc_roll_av(df=df2, column="2016_2019_mean", days=7)
df2["2016_2019_roll_av_min"] = df2[
["2016_roll_av", "2017_roll_av", "2018_roll_av", "2019_roll_av"]
].min(axis=1)
df2["2016_2019_roll_av_max"] = df2[
["2016_roll_av", "2017_roll_av", "2018_roll_av", "2019_roll_av"]
].max(axis=1)
return df2
if __name__ == "__main__":
df_covid = prepare_covid_data()
df_mortality_ts = fetch_and_prepare_mortality_data_timeseries()
df_mortality = merge_mortality_data_per_day(df_mortality_ts)
df = df_mortality.join(df_covid)
df.to_csv("data/de-mortality.tsv", sep="\t", index=True, lineterminator="\n")