forked from MobilityData/mobility-database-catalogs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathupdate_gtfs_schedule_sources.py
141 lines (122 loc) · 4.44 KB
/
update_gtfs_schedule_sources.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import os
from datetime import datetime, timedelta
import pandas as pd
from zipfile import ZipFile
from tools.operations import get_latest_datasets, update_gtfs_schedule_source, GTFS
from tools.helpers import download_dataset
from tools.constants import (
PATHWAYS_TXT,
FARES_ATTRIBUTES_TXT,
FARES_PRODUCTS_TXT,
LOCATION_GROUPS_TXT,
LOCATIONS_GEOJSON,
BOOKINGS_RULES_TXT,
AREAS_TXT,
STOP_TIMES_TXT,
CALENDAR_TXT,
START_SERVICE_AREA_ID,
START_SERVICE_AREA_RADIUS,
END_DATE,
GTFS_DATE_FORMAT,
SIX_MONTHS_IN_WEEKS,
PATHWAYS,
FARES_V1,
FARES_V2,
FLEX_V1,
FLEX_V2,
INACTIVE,
)
def has_at_least_2_rows(zip_file, extension_file_name):
return has_at_least_n_rows(zip_file, extension_file_name, 2)
def has_at_least_4_rows(zip_file, extension_file_name):
has_at_least_n_rows(zip_file, extension_file_name, 4)
def has_at_least_n_rows(zip_file, extension_file_name, n_rows):
return (
sum(1 for _ in zip_file.open(extension_file_name)) >= n_rows
if has_extension_file(
zip_file=zip_file, extension_file_name=extension_file_name
)
else False
)
def has_defined_values(zip_file, extension_file_name, columns):
result = False
if has_extension_file(zip_file=zip_file, extension_file_name=extension_file_name):
dataframe = pd.read_csv(zip_file.open(extension_file_name))
result = any(
[
dataframe[column].notna().any()
for column in columns
if column in dataframe
]
)
return result
def has_recent_service_date(zip_file):
result = False
if has_extension_file(zip_file=zip_file, extension_file_name=CALENDAR_TXT):
dataframe = pd.read_csv(zip_file.open(CALENDAR_TXT))
if END_DATE in dataframe:
dataframe = dataframe.loc[dataframe[END_DATE].notna()]
dataframe[END_DATE] = pd.to_datetime(
dataframe[END_DATE], format=GTFS_DATE_FORMAT, errors="coerce"
)
result = (
dataframe[END_DATE]
.loc[
dataframe[END_DATE]
> (datetime.now() - timedelta(weeks=SIX_MONTHS_IN_WEEKS))
]
.any()
)
return result
def has_extension_file(zip_file, extension_file_name):
return extension_file_name in zip_file.namelist()
if __name__ == "__main__":
latest_datasets = get_latest_datasets(GTFS)
for mdb_source_id, latest_url in latest_datasets.items():
dataset_path = download_dataset(latest_url)
dataset_zip = ZipFile(dataset_path)
dataset_features = []
if has_at_least_2_rows(zip_file=dataset_zip, extension_file_name=PATHWAYS_TXT):
dataset_features.append(PATHWAYS)
if has_at_least_2_rows(
zip_file=dataset_zip, extension_file_name=FARES_ATTRIBUTES_TXT
):
dataset_features.append(FARES_V1)
if has_at_least_2_rows(
zip_file=dataset_zip, extension_file_name=FARES_PRODUCTS_TXT
):
dataset_features.append(FARES_V2)
if has_extension_file(
zip_file=dataset_zip, extension_file_name=AREAS_TXT
) and has_defined_values(
zip_file=dataset_zip,
extension_file_name=STOP_TIMES_TXT,
columns=[START_SERVICE_AREA_ID, START_SERVICE_AREA_RADIUS],
):
dataset_features.append(FLEX_V1)
if (
has_at_least_2_rows(
zip_file=dataset_zip, extension_file_name=LOCATION_GROUPS_TXT
)
or has_at_least_2_rows(
zip_file=dataset_zip, extension_file_name=LOCATIONS_GEOJSON
)
or has_at_least_4_rows(
zip_file=dataset_zip, extension_file_name=BOOKINGS_RULES_TXT
)
):
dataset_features.append(FLEX_V2)
# If no feature is found, we assign None so we don't update the source features.
if len(dataset_features) == 0:
dataset_features = None
dataset_status = None
if not has_recent_service_date(zip_file=dataset_zip):
dataset_status = INACTIVE
# Delete the downloaded dataset because we don't need it anymore
os.remove(dataset_path)
# Update the source
update_gtfs_schedule_source(
mdb_source_id=mdb_source_id,
features=dataset_features,
status=dataset_status,
)