-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathinverse_rig.py
130 lines (99 loc) · 4.72 KB
/
inverse_rig.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#
# Copyright (c) 2021-2024 Electronic Arts Inc. All Rights Reserved
#
import os
from tqdm import tqdm
import numpy as np
import pathlib
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from model import make_rig_2_mesh_model, make_mesh_2_rig_model
from rig import unit_cube, rig_model
def train():
#
# Train an encoder to inverse the rig in a self-supervised fashion
# for a particular set of data
# using a pretrained differentiable rig approximation
#
current_folder = pathlib.Path(__file__).parent.resolve()
dataset_folder = os.path.join(current_folder, 'dataset')
checkpoint_folder = os.path.join(current_folder, 'checkpoints')
rig2mesh_checkpoint_path = os.path.join(checkpoint_folder, 'rig2mesh.pth.tar')
model_shape = [512]
rig2mesh_checkpoint = torch.load(rig2mesh_checkpoint_path)
rig2mesh_model_shape = rig2mesh_checkpoint['model_shape']
num_ctrl = rig2mesh_checkpoint['num_ctrl']
num_vertices = rig2mesh_checkpoint['num_vertices']
decoder_model = make_rig_2_mesh_model(num_ctrl, rig2mesh_model_shape, num_vertices*3)
decoder_model.load_state_dict(rig2mesh_checkpoint['model_state_dict'])
decoder_model.eval()
print('Decoder/rig approximation model')
print(decoder_model)
encoder_model = make_mesh_2_rig_model(num_ctrl, model_shape, num_vertices*3)
encoder_model.train()
print('Encoder/rig inversion model')
print(encoder_model)
optimizer = torch.optim.Adam(encoder_model.parameters(), lr=1e-5, betas=(0.9, 0.999))
criterion = nn.MSELoss()
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.5, patience=20, eps=1e-6)
## This is the "capture" data we want to find rig parameters for
anim_4D = np.load(os.path.join(dataset_folder, 'anim_4D.npy'))
anim_4D_flatten = np.asarray([x.flatten() for x in anim_4D])
dataloader = DataLoader(anim_4D_flatten, 32, num_workers=0, pin_memory=True, drop_last=False, shuffle=True)
epoch = 0
best_loss = 1000000
early_stop_count = 0
early_stop_patience = 50
while True:
num_batch = 0
sum_loss = 0
for batch in tqdm(dataloader):
# Train the encoder in a self-supervised fashion
vertices = batch.float()
optimizer.zero_grad()
rig_ctrl = encoder_model(vertices)
rig_output = decoder_model(rig_ctrl)
loss = criterion(rig_output, vertices).mean() # loss is mesh to mesh, there is no loss on the rig parameters here.
sum_loss += loss.item()
num_batch += len(vertices)
loss.backward()
optimizer.step()
#This is an improvement not published in the paper. For most rigs, zero rig parameters are expected to produce a known neutral pose, and vice versa
#We can use this to regularize the training by feeding the "neutral" mesh to the decoder and expect zero rig parameters.
if epoch > 0:
optimizer.zero_grad()
zero_output = encoder_model(torch.tensor(np.expand_dims(unit_cube.flatten(),0)).float())
loss = zero_output.mean()
loss.backward()
optimizer.step()
sum_loss /= num_batch
if (sum_loss) < best_loss:
early_stop_count = 0
best_loss = (sum_loss)
elif early_stop_count >= early_stop_patience:
break
else:
early_stop_count += 1
print(epoch, "training loss", sum_loss, 'lr', optimizer.param_groups[0]['lr'], 'early_stop_count', early_stop_count)
lr_scheduler.step(sum_loss)
epoch += 1
return encoder_model
def test(encoder_model):
#
# Test how successfull the rig inversion was by running the rig parameters produced by the encoder through the *actual* rig.
#
encoder_model.eval()
current_folder = pathlib.Path(__file__).parent.resolve()
dataset_folder = os.path.join(current_folder, 'dataset')
anim_4D = np.load(os.path.join(dataset_folder, 'anim_4D.npy'))
# Use the decoder to get rig parameters
found_anim = np.array([encoder_model(torch.tensor(mesh.flatten()).float()).detach().numpy() for mesh in anim_4D])
# to test we apply these rig parameters to the REAL rig
found_4d = np.array([rig_model(frame) for frame in found_anim])
average_vertex_error = dist = np.linalg.norm(found_4d-anim_4D, axis=-1).mean()
print('Euclidian rig inversion error:', average_vertex_error)
print('Unlike the decoder model which approximates the rig, the encoder model that inverse the rig is thrown away. A new model should be trained to inverse the rig on new data')
if __name__ == "__main__":
encoder_model = train()
test(encoder_model)