-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
35 lines (29 loc) · 1.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import pandas as pd
from sklearn.model_selection import train_test_split
from transformers import DistilBertTokenizerFast
import torch
from transformers import Trainer, TrainingArguments
import pickle
from transformers import BertForRanking
from rankingDataset import RankingDataset
train_dataset = pickle.load(open("./book_data/rankingDataset/train_dataset.pkl", "rb"))
val_dataset = pickle.load(open("./book_data/rankingDataset/val_dataset.pkl", "rb"))
#test_dataset = pickle.load(open("./book_data/rankingDataset/test_dataset.pkl", "rb"))
training_args = TrainingArguments(
output_dir='./results', # output directory
num_train_epochs=30, # total number of training epochs
per_device_train_batch_size=16, # batch size per device during training
per_device_eval_batch_size=16, # batch size for evaluation
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=10,
)
model = BertForRanking.from_pretrained("bert-base-uncased")
trainer = Trainer(
model=model, # the instantiated 🤗 Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
eval_dataset=val_dataset # evaluation dataset
)
trainer.train()