forked from moble/quaternion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
576 lines (482 loc) · 22 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
# Copyright (c) 2017, Michael Boyle
# See LICENSE file for details: <https://github.com/moble/quaternion/blob/master/LICENSE>
from __future__ import division, print_function, absolute_import
import numpy as np
from .numpy_quaternion import (quaternion, _eps,
from_spherical_coords, from_euler_angles,
rotor_intrinsic_distance, rotor_chordal_distance,
rotation_intrinsic_distance, rotation_chordal_distance,
slerp_evaluate, squad_evaluate,
# slerp_vectorized, squad_vectorized,
# slerp, squad,
)
from .quaternion_time_series import slerp, squad, integrate_angular_velocity
from .calculus import derivative, definite_integral, indefinite_integral
from ._version import __version__
__doc_title__ = "Quaternion dtype for NumPy"
__doc__ = "Adds a quaternion dtype to NumPy."
__all__ = ['quaternion',
'as_float_array', 'as_quat_array', 'as_spinor_array',
'as_rotation_matrix', 'from_rotation_matrix',
'as_rotation_vector', 'from_rotation_vector',
'as_euler_angles', 'from_euler_angles',
'as_spherical_coords', 'from_spherical_coords',
'rotate_vectors', 'allclose',
'rotor_intrinsic_distance', 'rotor_chordal_distance',
'rotation_intrinsic_distance', 'rotation_chordal_distance',
'slerp_evaluate', 'squad_evaluate',
'zero', 'one', 'x', 'y', 'z', 'integrate_angular_velocity',
'squad', 'slerp', 'derivative', 'definite_integral', 'indefinite_integral']
if 'quaternion' in np.__dict__:
raise RuntimeError('The NumPy package already has a quaternion type')
np.quaternion = quaternion
np.typeDict['quaternion'] = np.dtype(quaternion)
zero = np.quaternion(0, 0, 0, 0)
one = np.quaternion(1, 0, 0, 0)
x = np.quaternion(0, 1, 0, 0)
y = np.quaternion(0, 0, 1, 0)
z = np.quaternion(0, 0, 0, 1)
def as_float_array(a):
"""View the quaternion array as an array of floats
This function is fast (of order 1 microsecond) because no data is
copied; the returned quantity is just a "view" of the original.
The output view has one more dimension (of size 4) than the input
array, but is otherwise the same shape.
"""
a = np.asarray(a, dtype=np.quaternion)
if a.ndim == 0:
return a[()].components
av = a.view(np.float)
av = av.reshape(a.shape + (4,))
return av
def as_quat_array(a):
"""View a float array as an array of quaternions
This function is fast (of order 1 microsecond) because no data is
copied; the returned quantity is just a "view" of the original.
The input array must have a final dimension whose size is
divisible by four (or better yet *is* 4).
We will not convert back from a spinor array because there is no
unique convention for the spinors, so I don't want to mess with
that. Also, we want to discourage users from the slow,
memory-copying process of swapping columns required for useful
definitions of the spinors.
"""
a = np.ascontiguousarray(a, dtype=np.float)
if a.shape == (4,):
return quaternion(a[0], a[1], a[2], a[3])
try:
av = a.view(np.quaternion)
except ValueError:
a = a.copy()
av = a.view(np.quaternion)
if a.shape[-1] == 4:
av = av.reshape(a.shape[:-1])
# return a.view(np.quaternion).reshape(a.shape[:-1])
else:
av = av.reshape(a.shape[:-1] + (a.shape[-1] // 4,))
# return a.view(np.quaternion).reshape(a.shape[:-1]+(a.shape[-1]//4,))
return av
def as_spinor_array(a):
"""View a quaternion array as spinors in two-complex representation
This function is relatively slow and scales poorly, because memory
copying is apparently involved -- I think it's due to the
"advanced indexing" required to swap the columns.
"""
a = np.atleast_1d(a)
assert a.dtype == np.dtype(np.quaternion)
# I'm not sure why it has to be so complicated, but all of these steps
# appear to be necessary in this case.
return a.view(np.float).reshape(a.shape + (4,))[..., [0, 3, 2, 1]].ravel().view(np.complex).reshape(a.shape + (2,))
def as_rotation_matrix(q):
"""Convert input quaternion to 3x3 rotation matrix
Parameters
----------
q: quaternion or array of quaternions
The quaternion(s) need not be normalized, but must all be nonzero
Returns
-------
rot: float array
Output shape is q.shape+(3,3). This matrix should multiply (from
the left) a column vector to produce the rotated column vector.
Raises
------
ZeroDivisionError
If any of the input quaternions have norm 0.0.
"""
if q.shape == () and not isinstance(q, np.ndarray): # This is just a single quaternion
n = q.norm()
if n == 0.0:
raise ZeroDivisionError("Input to `as_rotation_matrix({0})` has zero norm".format(q))
elif abs(n-1.0) < _eps: # Input q is basically normalized
return np.array([
[1 - 2*(q.y**2 + q.z**2), 2*(q.x*q.y - q.z*q.w), 2*(q.x*q.z + q.y*q.w)],
[2*(q.x*q.y + q.z*q.w), 1 - 2*(q.x**2 + q.z**2), 2*(q.y*q.z - q.x*q.w)],
[2*(q.x*q.z - q.y*q.w), 2*(q.y*q.z + q.x*q.w), 1 - 2*(q.x**2 + q.y**2)]
])
else: # Input q is not normalized
return np.array([
[1 - 2*(q.y**2 + q.z**2)/n, 2*(q.x*q.y - q.z*q.w)/n, 2*(q.x*q.z + q.y*q.w)/n],
[2*(q.x*q.y + q.z*q.w)/n, 1 - 2*(q.x**2 + q.z**2)/n, 2*(q.y*q.z - q.x*q.w)/n],
[2*(q.x*q.z - q.y*q.w)/n, 2*(q.y*q.z + q.x*q.w)/n, 1 - 2*(q.x**2 + q.y**2)/n]
])
else: # This is an array of quaternions
n = np.norm(q)
if np.any(n == 0.0):
raise ZeroDivisionError("Array input to `as_rotation_matrix` has at least one element with zero norm")
else: # Assume input q is not normalized
m = np.empty(q.shape + (3, 3))
q = as_float_array(q)
m[..., 0, 0] = 1.0 - 2*(q[..., 2]**2 + q[..., 3]**2)/n
m[..., 0, 1] = 2*(q[..., 1]*q[..., 2] - q[..., 3]*q[..., 0])/n
m[..., 0, 2] = 2*(q[..., 1]*q[..., 3] + q[..., 2]*q[..., 0])/n
m[..., 1, 0] = 2*(q[..., 1]*q[..., 2] + q[..., 3]*q[..., 0])/n
m[..., 1, 1] = 1.0 - 2*(q[..., 1]**2 + q[..., 3]**2)/n
m[..., 1, 2] = 2*(q[..., 2]*q[..., 3] - q[..., 1]*q[..., 0])/n
m[..., 2, 0] = 2*(q[..., 1]*q[..., 3] - q[..., 2]*q[..., 0])/n
m[..., 2, 1] = 2*(q[..., 2]*q[..., 3] + q[..., 1]*q[..., 0])/n
m[..., 2, 2] = 1.0 - 2*(q[..., 1]**2 + q[..., 2]**2)/n
return m
def from_rotation_matrix(rot, nonorthogonal=True):
"""Convert input 3x3 rotation matrix to unit quaternion
By default, if scipy.linalg is available, this function uses
Bar-Itzhack's algorithm to allow for non-orthogonal matrices.
[J. Guidance, Vol. 23, No. 6, p. 1085 <http://dx.doi.org/10.2514/2.4654>]
This will almost certainly be quite a bit slower than simpler versions,
though it will be more robust to numerical errors in the rotation matrix.
Also note that Bar-Itzhack uses some pretty weird conventions. The last
component of the quaternion appears to represent the scalar, and the
quaternion itself is conjugated relative to the convention used
throughout this module.
If scipy.linalg is not available or if the optional
`nonorthogonal` parameter is set to `False`, this function falls
back to the possibly faster, but less robust, algorithm of Markley
[J. Guidance, Vol. 31, No. 2, p. 440
<http://dx.doi.org/10.2514/1.31730>].
Parameters
----------
rot: (...Nx3x3) float array
Each 3x3 matrix represents a rotation by multiplying (from the left)
a column vector to produce a rotated column vector. Note that this
input may actually have ndims>3; it is just assumed that the last
two dimensions have size 3, representing the matrix.
nonorthogonal: bool, optional
If scipy.linalg is available, use the more robust algorithm of
Bar-Itzhack. Default value is True.
Returns
-------
q: array of quaternions
Unit quaternions resulting in rotations corresponding to input
rotations. Output shape is rot.shape[:-2].
Raises
------
LinAlgError
If any of the eigenvalue solutions does not converge
"""
try:
from scipy import linalg
except ImportError:
linalg = False
rot = np.array(rot, copy=False)
shape = rot.shape[:-2]
if linalg and nonorthogonal:
from operator import mul
from functools import reduce
K3 = np.empty(shape+(4, 4))
K3[..., 0, 0] = (rot[..., 0, 0] - rot[..., 1, 1] - rot[..., 2, 2])/3.0
K3[..., 0, 1] = (rot[..., 1, 0] + rot[..., 0, 1])/3.0
K3[..., 0, 2] = (rot[..., 2, 0] + rot[..., 0, 2])/3.0
K3[..., 0, 3] = (rot[..., 1, 2] - rot[..., 2, 1])/3.0
K3[..., 1, 0] = K3[..., 0, 1]
K3[..., 1, 1] = (rot[..., 1, 1] - rot[..., 0, 0] - rot[..., 2, 2])/3.0
K3[..., 1, 2] = (rot[..., 2, 1] + rot[..., 1, 2])/3.0
K3[..., 1, 3] = (rot[..., 2, 0] - rot[..., 0, 2])/3.0
K3[..., 2, 0] = K3[..., 0, 2]
K3[..., 2, 1] = K3[..., 1, 2]
K3[..., 2, 2] = (rot[..., 2, 2] - rot[..., 0, 0] - rot[..., 1, 1])/3.0
K3[..., 2, 3] = (rot[..., 0, 1] - rot[..., 1, 0])/3.0
K3[..., 3, 0] = K3[..., 0, 3]
K3[..., 3, 1] = K3[..., 1, 3]
K3[..., 3, 2] = K3[..., 2, 3]
K3[..., 3, 3] = (rot[..., 0, 0] + rot[..., 1, 1] + rot[..., 2, 2])/3.0
if not shape:
q = zero.copy()
eigvals, eigvecs = linalg.eigh(K3.T, eigvals=(3, 3))
q.components[0] = eigvecs[-1]
q.components[1:] = -eigvecs[:-1].flatten()
return q
else:
q = np.empty(shape+(4,), dtype=np.float)
for flat_index in range(reduce(mul, shape)):
multi_index = np.unravel_index(flat_index, shape)
eigvals, eigvecs = linalg.eigh(K3[multi_index], eigvals=(3, 3))
q[multi_index, 0] = eigvecs[-1]
q[multi_index, 1:] = -eigvecs[:-1].flatten()
return as_quat_array(q)
else: # No scipy.linalg or not `nonorthogonal`
diagonals = np.empty(shape+(4,))
diagonals[..., 0] = rot[..., 0, 0]
diagonals[..., 1] = rot[..., 1, 1]
diagonals[..., 2] = rot[..., 2, 2]
diagonals[..., 3] = rot[..., 0, 0] + rot[..., 1, 1] + rot[..., 2, 2]
indices = np.argmax(diagonals, axis=-1)
q = diagonals # reuse storage space
indices_i = (indices == 0)
if np.any(indices_i):
if indices_i.shape == ():
indices_i = Ellipsis
rot_i = rot[indices_i, :, :]
q[indices_i, 0] = rot_i[..., 2, 1] - rot_i[..., 1, 2]
q[indices_i, 1] = 1 + rot_i[..., 0, 0] - rot_i[..., 1, 1] - rot_i[..., 2, 2]
q[indices_i, 2] = rot_i[..., 0, 1] + rot_i[..., 1, 0]
q[indices_i, 3] = rot_i[..., 0, 2] + rot_i[..., 2, 0]
indices_i = (indices == 1)
if np.any(indices_i):
if indices_i.shape == ():
indices_i = Ellipsis
rot_i = rot[indices_i, :, :]
q[indices_i, 0] = rot_i[..., 0, 2] - rot_i[..., 2, 0]
q[indices_i, 1] = rot_i[..., 1, 0] + rot_i[..., 0, 1]
q[indices_i, 2] = 1 - rot_i[..., 0, 0] + rot_i[..., 1, 1] - rot_i[..., 2, 2]
q[indices_i, 3] = rot_i[..., 1, 2] + rot_i[..., 2, 1]
indices_i = (indices == 2)
if np.any(indices_i):
if indices_i.shape == ():
indices_i = Ellipsis
rot_i = rot[indices_i, :, :]
q[indices_i, 0] = rot_i[..., 1, 0] - rot_i[..., 0, 1]
q[indices_i, 1] = rot_i[..., 2, 0] + rot_i[..., 0, 2]
q[indices_i, 2] = rot_i[..., 2, 1] + rot_i[..., 1, 2]
q[indices_i, 3] = 1 - rot_i[..., 0, 0] - rot_i[..., 1, 1] + rot_i[..., 2, 2]
indices_i = (indices == 3)
if np.any(indices_i):
if indices_i.shape == ():
indices_i = Ellipsis
rot_i = rot[indices_i, :, :]
q[indices_i, 0] = 1 + rot_i[..., 0, 0] + rot_i[..., 1, 1] + rot_i[..., 2, 2]
q[indices_i, 1] = rot_i[..., 2, 1] - rot_i[..., 1, 2]
q[indices_i, 2] = rot_i[..., 0, 2] - rot_i[..., 2, 0]
q[indices_i, 3] = rot_i[..., 1, 0] - rot_i[..., 0, 1]
q /= np.linalg.norm(q, axis=-1)[..., np.newaxis]
return as_quat_array(q)
def as_rotation_vector(q):
"""Convert input quaternion to the axis-angle representation
Note that if any of the input quaternions has norm zero, no error is
raised, but NaNs will appear in the output.
Parameters
----------
q: quaternion or array of quaternions
The quaternion(s) need not be normalized, but must all be nonzero
Returns
-------
rot: float array
Output shape is q.shape+(3,). Each vector represents the axis of
the rotation, with norm proportional to the angle of the rotation.
"""
return as_float_array(2*np.log(np.normalized(q)))[..., 1:]
def from_rotation_vector(rot):
"""Convert input 3-vector in axis-angle representation to unit quaternion
Parameters
----------
rot: (Nx3) float array
Each vector represents the axis of the rotation, with norm
proportional to the angle of the rotation.
Returns
-------
q: array of quaternions
Unit quaternions resulting in rotations corresponding to input
rotations. Output shape is rot.shape[:-1].
"""
rot = np.array(rot, copy=False)
quats = np.zeros(rot.shape[:-1]+(4,))
quats[..., 1:] = rot[...]/2
quats = as_quat_array(quats)
return np.exp(quats)
def as_euler_angles(q):
"""Open Pandora's Box
If somebody is trying to make you use Euler angles, tell them no,
and walk away, and go and tell your mum.
You don't want to use Euler angles. They are awful. Stay away.
It's one thing to convert from Euler angles to quaternions; at least
you're moving in the right direction. But to go the other way?! It's
just not right.
Parameters
----------
q: quaternion or array of quaternions
The quaternion(s) need not be normalized, but must all be nonzero
Returns
-------
alpha_beta_gamma: float array
Output shape is q.shape+(3,). These represent the angles
(alpha, beta, gamma), where the normalized input quaternion
represents `exp(alpha*z/2) * exp(beta*y/2) * exp(gamma*z/2)`.
Raises
------
AllHell
If you try to actually use Euler angles, when you could have been
using quaternions like a sensible person.
"""
alpha_beta_gamma = np.empty(q.shape + (3,), dtype=np.float)
n = np.norm(q)
q = as_float_array(q)
alpha_beta_gamma[..., 0] = np.arctan2(q[..., 3], q[..., 0]) + np.arctan2(-q[..., 1], q[..., 2])
alpha_beta_gamma[..., 1] = 2*np.arccos(np.sqrt((q[..., 0]**2 + q[..., 3]**2)/n))
alpha_beta_gamma[..., 2] = np.arctan2(q[..., 3], q[..., 0]) - np.arctan2(-q[..., 1], q[..., 2])
return alpha_beta_gamma
def as_spherical_coords(q):
"""Return the spherical coordinates corresponding to this quaternion
Obviously, spherical coordinates do not contain as much
information as a quaternion, so this function does lose some
information. However, the returned spherical coordinates will
represent the point(s) on the sphere to which the input
quaternion(s) rotate the z axis.
Parameters
----------
q: quaternion or array of quaternions
The quaternion(s) need not be normalized, but must be nonzero
Returns
-------
vartheta_varphi: float array
Output shape is q.shape+(2,). These represent the angles
(vartheta, varphi), where the normalized input quaternion
represents `exp(varphi*z/2) * exp(vartheta*y/2)`, up to an
arbitrary inital rotation about `z`.
"""
return as_euler_angles(q)[..., 1::-1]
def rotate_vectors(R, v, axis=-1):
"""Rotate vectors by given quaternions
For simplicity, this function simply converts the input
quaternion(s) to a matrix, and rotates the input vector(s) by the
usual matrix multiplication. However, it should be noted that if
each input quaternion is only used to rotate a single vector, it
is more efficient (in terms of operation counts) to use the
formula
v' = v + 2 * r x (s * v + r x v) / m
where x represents the cross product, s and r are the scalar and
vector parts of the quaternion, respectively, and m is the sum of
the squares of the components of the quaternion. If you are
looping over a very large number of quaternions, and just rotating
a single vector each time, you might want to implement that
alternative algorithm using numba (or something that doesn't use
python).
Parameters
==========
R: quaternion array
Quaternions by which to rotate the input vectors
v: float array
Three-vectors to be rotated.
axis: int
Axis of the `v` array to use as the vector dimension. This
axis of `v` must have length 3.
Returns
=======
vprime: float array
The rotated vectors. This array has shape R.shape+v.shape.
"""
R = np.asarray(R, dtype=np.quaternion)
v = np.asarray(v, dtype=float)
if v.ndim < 1 or 3 not in v.shape:
raise ValueError("Input `v` does not have at least one dimension of length 3")
if v.shape[axis] != 3:
raise ValueError("Input `v` axis {0} has length {1}, not 3.".format(axis, v.shape[axis]))
m = as_rotation_matrix(R)
m_axes = list(range(m.ndim))
v_axes = list(range(m.ndim, m.ndim+v.ndim))
mv_axes = list(v_axes)
mv_axes[axis] = m_axes[-2]
mv_axes = m_axes[:-2] + mv_axes
v_axes[axis] = m_axes[-1]
return np.einsum(m, m_axes, v, v_axes, mv_axes)
def allclose(a, b, rtol=4*np.finfo(float).eps, atol=0.0, verbose=False):
"""
Returns True if two arrays are element-wise equal within a tolerance.
This function is essentially a copy of the `numpy.allclose` function,
with different default tolerances, minor changes necessary to deal
correctly with quaternions, and the verbose option.
The tolerance values are positive, typically very small numbers. The
relative difference (`rtol` * abs(`b`)) and the absolute difference
`atol` are added together to compare against the absolute difference
between `a` and `b`.
If either array contains one or more NaNs, False is returned.
Infs are treated as equal if they are in the same place and of the same
sign in both arrays.
Parameters
----------
a, b : array_like
Input arrays to compare.
rtol : float
The relative tolerance parameter (see Notes). Default 4*eps.
atol : float
The absolute tolerance parameter (see Notes). Default 0.0.
Returns
-------
allclose : bool
Returns True if the two arrays are equal within the given
tolerance; False otherwise.
See Also
--------
numpy.allclose
Notes
-----
If the following equation is element-wise True, then allclose returns
True.
absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))
The above equation is not symmetric in `a` and `b`, so that
`allclose(a, b)` might be different from `allclose(b, a)` in
some rare cases.
Examples
--------
>>> import numpy as np
>>> import quaternion
>>> q1 = quaternion.quaternion(1e10, 0, 0, 0)
>>> q2 = quaternion.quaternion(1.00001e10, 0, 0, 0)
>>> q3 = quaternion.quaternion(1.0001e10, 0, 0, 0)
>>> q4 = quaternion.quaternion(1e-7, 0, 0, 0)
>>> q5 = quaternion.quaternion(1e-8, 0, 0, 0)
>>> q6 = quaternion.quaternion(1e-9, 0, 0, 0)
>>> q7 = quaternion.quaternion(np.nan, 0, 0, 0)
>>> quaternion.allclose([q1, q4], [q2, q5], rtol=1.e-5, atol=1.e-8)
False
>>> quaternion.allclose([q1, q5], [q2, q6], rtol=1.e-5, atol=1.e-8)
True
>>> quaternion.allclose([q1, q5], [q3, q6], rtol=1.e-5, atol=1.e-8)
False
>>> quaternion.allclose([quaternion.one, q7], [quaternion.one, q7], rtol=1.e-5, atol=1.e-8)
False
"""
x = np.array(a, copy=False, ndmin=1)
y = np.array(b, copy=False, ndmin=1)
xinf = np.isinf(x)
yinf = np.isinf(y)
if np.any(xinf) or np.any(yinf):
# Check that x and y have inf's only in the same positions
if not np.all(xinf == yinf):
if verbose:
print('not all(xinf == yinf)')
equal = (xinf == yinf)
for i, val in enumerate(equal.flatten()):
if not val:
print('\nx[{0}]={1}\ny[{0}]={2}'.format(i, x.flatten()[i], y.flatten()[i]))
return False
# Check that sign of inf's in x and y is the same
if not np.all(x[xinf] == y[xinf]):
if verbose:
print('not all(x[xinf] == y[xinf])')
equal = (x[xinf] == y[xinf])
for i, val in enumerate(equal.flatten()):
if not val:
print('\nx[{0}]={1}\ny[{0}]={2}'.format(i, x[xinf].flatten()[i], y[xinf].flatten()[i]))
return False
x = x[~xinf]
y = y[~xinf]
# ignore invalid fpe's
with np.errstate(invalid='ignore'):
r = np.all(np.less_equal(abs(x - y), atol + rtol * abs(y)))
if verbose and not r:
lessequal = np.less_equal(abs(x - y), atol + rtol * abs(y))
for i, val in enumerate(lessequal.flatten()):
if not val:
print('\nx[{0}]={1}\ny[{0}]={2}'.format(i, x.flatten()[i], y.flatten()[i])
+ '\n{0} > {1} + {2} * {3} = {4}'.format(abs(x.flatten()[i] - y.flatten()[i]),
atol, rtol, abs(y.flatten()[i]),
atol + rtol * abs(y.flatten()[i])))
return r