forked from ggerganov/whisper.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstream.cpp
433 lines (345 loc) · 17.7 KB
/
stream.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
// Real-time speech recognition of input from a microphone
//
// A very quick-n-dirty implementation serving mainly as a proof of concept.
//
#include "common-sdl.h"
#include "common.h"
#include "whisper.h"
#include <cassert>
#include <cstdio>
#include <string>
#include <thread>
#include <vector>
#include <fstream>
// 500 -> 00:05.000
// 6000 -> 01:00.000
std::string to_timestamp(int64_t t) {
int64_t sec = t/100;
int64_t msec = t - sec*100;
int64_t min = sec/60;
sec = sec - min*60;
char buf[32];
snprintf(buf, sizeof(buf), "%02d:%02d.%03d", (int) min, (int) sec, (int) msec);
return std::string(buf);
}
// command-line parameters
struct whisper_params {
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t step_ms = 3000;
int32_t length_ms = 10000;
int32_t keep_ms = 200;
int32_t capture_id = -1;
int32_t max_tokens = 32;
int32_t audio_ctx = 0;
float vad_thold = 0.6f;
float freq_thold = 100.0f;
bool speed_up = false;
bool translate = false;
bool no_fallback = false;
bool print_special = false;
bool no_context = true;
bool no_timestamps = false;
bool tinydiarize = false;
bool save_audio = false; // save audio to wav file
bool use_gpu = true;
std::string language = "en";
std::string model = "models/ggml-base.en.bin";
std::string fname_out;
};
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-h" || arg == "--help") {
whisper_print_usage(argc, argv, params);
exit(0);
}
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
else if ( arg == "--step") { params.step_ms = std::stoi(argv[++i]); }
else if ( arg == "--length") { params.length_ms = std::stoi(argv[++i]); }
else if ( arg == "--keep") { params.keep_ms = std::stoi(argv[++i]); }
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
else if (arg == "-nf" || arg == "--no-fallback") { params.no_fallback = true; }
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
else if (arg == "-kc" || arg == "--keep-context") { params.no_context = false; }
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
else if (arg == "-m" || arg == "--model") { params.model = argv[++i]; }
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
else if (arg == "-tdrz" || arg == "--tinydiarize") { params.tinydiarize = true; }
else if (arg == "-sa" || arg == "--save-audio") { params.save_audio = true; }
else if (arg == "-ng" || arg == "--no-gpu") { params.use_gpu = false; }
else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
whisper_print_usage(argc, argv, params);
exit(0);
}
}
return true;
}
void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) {
fprintf(stderr, "\n");
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
fprintf(stderr, " --step N [%-7d] audio step size in milliseconds\n", params.step_ms);
fprintf(stderr, " --length N [%-7d] audio length in milliseconds\n", params.length_ms);
fprintf(stderr, " --keep N [%-7d] audio to keep from previous step in ms\n", params.keep_ms);
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
fprintf(stderr, " -nf, --no-fallback [%-7s] do not use temperature fallback while decoding\n", params.no_fallback ? "true" : "false");
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
fprintf(stderr, " -kc, --keep-context [%-7s] keep context between audio chunks\n", params.no_context ? "false" : "true");
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
fprintf(stderr, " -m FNAME, --model FNAME [%-7s] model path\n", params.model.c_str());
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
fprintf(stderr, " -tdrz, --tinydiarize [%-7s] enable tinydiarize (requires a tdrz model)\n", params.tinydiarize ? "true" : "false");
fprintf(stderr, " -sa, --save-audio [%-7s] save the recorded audio to a file\n", params.save_audio ? "true" : "false");
fprintf(stderr, " -ng, --no-gpu [%-7s] disable GPU inference\n", params.use_gpu ? "false" : "true");
fprintf(stderr, "\n");
}
int main(int argc, char ** argv) {
whisper_params params;
if (whisper_params_parse(argc, argv, params) == false) {
return 1;
}
params.keep_ms = std::min(params.keep_ms, params.step_ms);
params.length_ms = std::max(params.length_ms, params.step_ms);
const int n_samples_step = (1e-3*params.step_ms )*WHISPER_SAMPLE_RATE;
const int n_samples_len = (1e-3*params.length_ms)*WHISPER_SAMPLE_RATE;
const int n_samples_keep = (1e-3*params.keep_ms )*WHISPER_SAMPLE_RATE;
const int n_samples_30s = (1e-3*30000.0 )*WHISPER_SAMPLE_RATE;
const bool use_vad = n_samples_step <= 0; // sliding window mode uses VAD
const int n_new_line = !use_vad ? std::max(1, params.length_ms / params.step_ms - 1) : 1; // number of steps to print new line
params.no_timestamps = !use_vad;
params.no_context |= use_vad;
params.max_tokens = 0;
// init audio
audio_async audio(params.length_ms);
if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) {
fprintf(stderr, "%s: audio.init() failed!\n", __func__);
return 1;
}
audio.resume();
// whisper init
if (params.language != "auto" && whisper_lang_id(params.language.c_str()) == -1){
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
whisper_print_usage(argc, argv, params);
exit(0);
}
struct whisper_context_params cparams;
cparams.use_gpu = params.use_gpu;
struct whisper_context * ctx = whisper_init_from_file_with_params(params.model.c_str(), cparams);
std::vector<float> pcmf32 (n_samples_30s, 0.0f);
std::vector<float> pcmf32_old;
std::vector<float> pcmf32_new(n_samples_30s, 0.0f);
std::vector<whisper_token> prompt_tokens;
// print some info about the processing
{
fprintf(stderr, "\n");
if (!whisper_is_multilingual(ctx)) {
if (params.language != "en" || params.translate) {
params.language = "en";
params.translate = false;
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
}
}
fprintf(stderr, "%s: processing %d samples (step = %.1f sec / len = %.1f sec / keep = %.1f sec), %d threads, lang = %s, task = %s, timestamps = %d ...\n",
__func__,
n_samples_step,
float(n_samples_step)/WHISPER_SAMPLE_RATE,
float(n_samples_len )/WHISPER_SAMPLE_RATE,
float(n_samples_keep)/WHISPER_SAMPLE_RATE,
params.n_threads,
params.language.c_str(),
params.translate ? "translate" : "transcribe",
params.no_timestamps ? 0 : 1);
if (!use_vad) {
fprintf(stderr, "%s: n_new_line = %d, no_context = %d\n", __func__, n_new_line, params.no_context);
} else {
fprintf(stderr, "%s: using VAD, will transcribe on speech activity\n", __func__);
}
fprintf(stderr, "\n");
}
int n_iter = 0;
bool is_running = true;
std::ofstream fout;
if (params.fname_out.length() > 0) {
fout.open(params.fname_out);
if (!fout.is_open()) {
fprintf(stderr, "%s: failed to open output file '%s'!\n", __func__, params.fname_out.c_str());
return 1;
}
}
wav_writer wavWriter;
// save wav file
if (params.save_audio) {
// Get current date/time for filename
time_t now = time(0);
char buffer[80];
strftime(buffer, sizeof(buffer), "%Y%m%d%H%M%S", localtime(&now));
std::string filename = std::string(buffer) + ".wav";
wavWriter.open(filename, WHISPER_SAMPLE_RATE, 16, 1);
}
printf("[Start speaking]\n");
fflush(stdout);
auto t_last = std::chrono::high_resolution_clock::now();
const auto t_start = t_last;
// main audio loop
while (is_running) {
if (params.save_audio) {
wavWriter.write(pcmf32_new.data(), pcmf32_new.size());
}
// handle Ctrl + C
is_running = sdl_poll_events();
if (!is_running) {
break;
}
// process new audio
if (!use_vad) {
while (true) {
audio.get(params.step_ms, pcmf32_new);
if ((int) pcmf32_new.size() > 2*n_samples_step) {
fprintf(stderr, "\n\n%s: WARNING: cannot process audio fast enough, dropping audio ...\n\n", __func__);
audio.clear();
continue;
}
if ((int) pcmf32_new.size() >= n_samples_step) {
audio.clear();
break;
}
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
const int n_samples_new = pcmf32_new.size();
// take up to params.length_ms audio from previous iteration
const int n_samples_take = std::min((int) pcmf32_old.size(), std::max(0, n_samples_keep + n_samples_len - n_samples_new));
//printf("processing: take = %d, new = %d, old = %d\n", n_samples_take, n_samples_new, (int) pcmf32_old.size());
pcmf32.resize(n_samples_new + n_samples_take);
for (int i = 0; i < n_samples_take; i++) {
pcmf32[i] = pcmf32_old[pcmf32_old.size() - n_samples_take + i];
}
memcpy(pcmf32.data() + n_samples_take, pcmf32_new.data(), n_samples_new*sizeof(float));
pcmf32_old = pcmf32;
} else {
const auto t_now = std::chrono::high_resolution_clock::now();
const auto t_diff = std::chrono::duration_cast<std::chrono::milliseconds>(t_now - t_last).count();
if (t_diff < 2000) {
std::this_thread::sleep_for(std::chrono::milliseconds(100));
continue;
}
audio.get(2000, pcmf32_new);
if (::vad_simple(pcmf32_new, WHISPER_SAMPLE_RATE, 1000, params.vad_thold, params.freq_thold, false)) {
audio.get(params.length_ms, pcmf32);
} else {
std::this_thread::sleep_for(std::chrono::milliseconds(100));
continue;
}
t_last = t_now;
}
// run the inference
{
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
wparams.print_progress = false;
wparams.print_special = params.print_special;
wparams.print_realtime = false;
wparams.print_timestamps = !params.no_timestamps;
wparams.translate = params.translate;
wparams.single_segment = !use_vad;
wparams.max_tokens = params.max_tokens;
wparams.language = params.language.c_str();
wparams.n_threads = params.n_threads;
wparams.audio_ctx = params.audio_ctx;
wparams.speed_up = params.speed_up;
wparams.tdrz_enable = params.tinydiarize; // [TDRZ]
// disable temperature fallback
//wparams.temperature_inc = -1.0f;
wparams.temperature_inc = params.no_fallback ? 0.0f : wparams.temperature_inc;
wparams.prompt_tokens = params.no_context ? nullptr : prompt_tokens.data();
wparams.prompt_n_tokens = params.no_context ? 0 : prompt_tokens.size();
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
fprintf(stderr, "%s: failed to process audio\n", argv[0]);
return 6;
}
// print result;
{
if (!use_vad) {
printf("\33[2K\r");
// print long empty line to clear the previous line
printf("%s", std::string(100, ' ').c_str());
printf("\33[2K\r");
} else {
const int64_t t1 = (t_last - t_start).count()/1000000;
const int64_t t0 = std::max(0.0, t1 - pcmf32.size()*1000.0/WHISPER_SAMPLE_RATE);
printf("\n");
printf("### Transcription %d START | t0 = %d ms | t1 = %d ms\n", n_iter, (int) t0, (int) t1);
printf("\n");
}
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const char * text = whisper_full_get_segment_text(ctx, i);
if (params.no_timestamps) {
printf("%s", text);
fflush(stdout);
if (params.fname_out.length() > 0) {
fout << text;
}
} else {
const int64_t t0 = whisper_full_get_segment_t0(ctx, i);
const int64_t t1 = whisper_full_get_segment_t1(ctx, i);
std::string output = "[" + to_timestamp(t0) + " --> " + to_timestamp(t1) + "] " + text;
if (whisper_full_get_segment_speaker_turn_next(ctx, i)) {
output += " [SPEAKER_TURN]";
}
output += "\n";
printf("%s", output.c_str());
fflush(stdout);
if (params.fname_out.length() > 0) {
fout << output;
}
}
}
if (params.fname_out.length() > 0) {
fout << std::endl;
}
if (use_vad) {
printf("\n");
printf("### Transcription %d END\n", n_iter);
}
}
++n_iter;
if (!use_vad && (n_iter % n_new_line) == 0) {
printf("\n");
// keep part of the audio for next iteration to try to mitigate word boundary issues
pcmf32_old = std::vector<float>(pcmf32.end() - n_samples_keep, pcmf32.end());
// Add tokens of the last full length segment as the prompt
if (!params.no_context) {
prompt_tokens.clear();
const int n_segments = whisper_full_n_segments(ctx);
for (int i = 0; i < n_segments; ++i) {
const int token_count = whisper_full_n_tokens(ctx, i);
for (int j = 0; j < token_count; ++j) {
prompt_tokens.push_back(whisper_full_get_token_id(ctx, i, j));
}
}
}
}
fflush(stdout);
}
}
audio.pause();
whisper_print_timings(ctx);
whisper_free(ctx);
return 0;
}