-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathabsorbingmarkovchain.go
249 lines (216 loc) · 6.35 KB
/
absorbingmarkovchain.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
// Package absorbingmarkovchain provides primitives for computing absorption probabilities of absorbing markov chains.
package absorbingmarkovchain
import (
"context"
"io/ioutil"
"math"
"math/rand"
"os"
"path/filepath"
"runtime/debug"
"github.com/RoaringBitmap/roaring"
"github.com/pkg/errors"
"github.com/ebonetti/absorbingmarkovchain/internal/gmres"
)
// New creates a new absorbing markov chain.
func New(tmpDir string, nodes, absorbingNodes *roaring.Bitmap, edges func(from uint32) (to []uint32), weighter func(from, to uint32) (weight float64, err error)) *AbsorbingMarkovChain {
return &AbsorbingMarkovChain{
wDGraph{
dGraph{
nodes,
edges,
},
weighter,
},
absorbingNodes,
tmpDir,
}
}
// AbsorbingMarkovChain represents an absorbing markov chain.
type AbsorbingMarkovChain struct {
wDGraph
absorbingNodes *roaring.Bitmap
tmpDir string
}
// AbsorptionProbabilities calculates absorption probabilities for the current absorbing markov chain.
func (chain *AbsorbingMarkovChain) AbsorptionProbabilities(ctx context.Context) (weighter func(from, to uint32) (weight float64, err error), err error) {
fuzzyAssignments, ttn, tan, err := chain.absorptionProbabilities(ctx, func() { chain = nil }) //enable eventual GC
if err != nil {
return
}
return func(from, to uint32) (weight float64, err error) {
a, e1 := tan.ToNew(to)
t, e2 := ttn.ToNew(from)
switch {
case e1 != nil:
err = e1
case e2 != nil:
err = e2
default:
weight = fuzzyAssignments[a][t]
}
return
}, nil
}
// AbsorptionAssignments calculates a majority assignment from absorption probabilities.
func (chain *AbsorbingMarkovChain) AbsorptionAssignments(ctx context.Context) (assigner map[uint32]uint32, err error) {
fail := func(e error) (map[uint32]uint32, error) {
assigner, err = nil, e
return assigner, err
}
fuzzyAssignments, ttn, tan, err := chain.absorptionProbabilities(ctx, func() { chain = nil }) //enable eventual GC
if err != nil {
return fail(err)
}
silentFail := func(fi func(uint32) (uint32, error)) func(int) uint32 {
return func(intida int) (idb uint32) {
ida := uint32(intida)
switch {
case err != nil:
//Skip it
case ida > ^uint32(0): //max Uint32
err = errors.Errorf("%v is not a valid node.", ida)
default:
idb, err = fi(ida)
}
return
}
}
ttn2Old := silentFail(ttn.ToOld)
tan2Old := silentFail(tan.ToOld)
assigner = make(map[uint32]uint32, len(fuzzyAssignments[0]))
for tnID := range fuzzyAssignments[0] {
perm := rand.Perm(len(fuzzyAssignments))
bestv, bestw := -1, -1.0
for _, v := range perm {
w := fuzzyAssignments[v][tnID]
if w > bestw {
bestv = v
bestw = w
}
}
assigner[ttn2Old(tnID)] = tan2Old(bestv)
}
if err != nil {
return fail(err)
}
return
}
func (chain *AbsorbingMarkovChain) absorptionProbabilities(ctx context.Context, clean func()) (fuzzyAssignments [][]float64, ttn, tan translator, err error) {
fail := func(e error) ([][]float64, translator, translator, error) {
fuzzyAssignments, ttn, tan, err = nil, nil, nil, e
return fuzzyAssignments, ttn, tan, err
}
if err = chain.checkRequirements(); err != nil {
return fail(err)
}
var tmpDir string
if tmpDir, err = ioutil.TempDir(chain.tmpDir, "."); err != nil {
return fail(errors.Wrap(err, "AbsorbingMarkovChain Error: unable to create a temporary directory."))
}
defer os.RemoveAll(tmpDir)
solverInfile := filepath.Join(tmpDir, "Ab.ptsc")
solverOutfile := filepath.Join(tmpDir, "sol.matlab")
//transform wikigraph to Ab.petsc
if ttn, tan, err = graph2Petsc(chain, solverInfile); err != nil {
return fail(err)
}
//enable eventual GC
chain = nil
clean()
debug.FreeOSMemory()
//run solver
if err = gmres.Run(ctx, solverInfile, solverOutfile, tmpDir); err != nil {
return fail(err)
}
//transform back from sol.matlab
if fuzzyAssignments, err = petsc2Assignments(ttn, tan, solverOutfile); err != nil {
return fail(err)
}
return
}
func (chain *AbsorbingMarkovChain) checkRequirements() (err error) { //for absorbing markov chain
if chain == nil {
return errors.New("AbsorbingMarkovChain Error: nil chain")
}
if err = chain.checkGraphNodes(); err == nil {
return
}
nodes := roaring.NewBitmap()
if err = chain.checkAbsorbingNodes(nodes); err == nil {
return
}
if err = chain.checkTransientNodes(nodes); err == nil {
return
}
if nodes.GetCardinality() != chain.Nodes.GetCardinality() {
v, _ := roaring.AndNot(chain.Nodes, nodes).Select(0)
return errors.Errorf("%v isn't transient node, neither it's declared absorbing.", v)
}
chain.Weighter = checkedWeighter(chain.Weighter)
return
}
func (chain *AbsorbingMarkovChain) checkGraphNodes() (err error) {
nodes := chain.Nodes
for i := nodes.Iterator(); i.HasNext(); {
from := i.Next()
to := chain.Edges(from)
for _, id := range to {
if !nodes.Contains(id) {
return errors.Errorf("arc (%v,%v) shouldn't exist: %v isn't a graph node.", from, id, id)
}
}
}
return
}
func (chain *AbsorbingMarkovChain) checkAbsorbingNodes(nodes *roaring.Bitmap) (err error) {
for i := chain.absorbingNodes.Iterator(); i.HasNext(); {
ANode := i.Next()
to := chain.Edges(ANode)
switch {
case len(to) > 1:
fallthrough
case len(to) == 1 && to[0] != ANode:
return errors.Errorf("%v is not a valid absorbing node.", ANode)
default:
nodes.Add(ANode)
}
}
return
}
func (chain *AbsorbingMarkovChain) checkTransientNodes(nodes *roaring.Bitmap) (err error) {
changed := true
for changed {
changed = false
for i := roaring.AndNot(chain.Nodes, chain.absorbingNodes).Iterator(); i.HasNext(); {
from := i.Next()
if !nodes.Contains(from) {
to := chain.Edges(from)
for _, id := range to {
if nodes.Contains(id) {
nodes.Add(from)
changed = true
break
}
}
}
}
}
return
}
func checkedWeighter(weighter func(from, to uint32) (weight float64, err error)) func(from, to uint32) (weight float64, err error) {
return func(from, to uint32) (weight float64, err error) {
weight, err = weighter(from, to)
switch {
case err != nil:
//err already set
case weight <= 0:
err = errors.Errorf("arc (%v,%v) hasn't positive weight (%v).", from, to, weight)
case math.IsInf(weight, 0):
err = errors.Errorf("arc (%v,%v) has infinite weight (%v).", from, to, weight)
case math.IsNaN(weight):
err = errors.Errorf("arc (%v,%v) has NaN weight (%v).", from, to, weight)
}
return
}
}