-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathKF_RTS_NL.m
619 lines (532 loc) · 22.9 KB
/
KF_RTS_NL.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
function [Xfilt, Xsmoothed, MeasNoiseFilt, MeasNoiseSmoothed, iter, innovation] = KF_RTS_NL(Y, A, C, Q, R, varargin)
% KF_RTS_NL sequential Kalman Filter and Smoother for nonlinear systems
% Linear and nonlinear Kalman Filter and Smoother; sequential implementation of Joseph
% stabilized, symmetrized form. Only works for diagonal measurement noise
% covariance matrices R!
%
% To use a time-varying linear system description, pass 3d arrays for A, C, and/or Q,
% where the last index iterates over sample indices and/or an array for R,
% where the rows indicate different samples.
%
% To use a nonlinear system, pass a function handle for A and/or C. An iterative
% sigma point filter/smoother is used in that case. The quadrature scheme / sigma point
% selection scheme can be specified; the default is the standard unscented transform.
% By default, multiple iterative filter/smoother runs are performed, often leading to
% highly significant performance gains.
% To consider a time-varying nonlinear system, pass a function handle that takes two
% inputs, x and ii (the measurement index).
%
% Inputs are currently not considered.
%
% For details on the KF and its sequential implementation and the RTS see Dan Simon, Optimal State Estimation (2006), p. 150.
% For general discrete-time nonlinear filtering using sigma point methods, see Arasaratnam and
% Haykin (2007), "Discrete-Time Nonlinear Filtering Algorithms Using Gauss-Hermite Quadrature".
% The formulation of state constraints is due to section 2.4 of "Kalman filtering with state constraints: a survey of
% linear and nonlinear algorithms" by Dan Simon, IET Control Theory and Applications, 2009.
% For the generalized iterative quadrature filtering implemented here, see Herzog, Petersen, Rostalski (2019),
% "Iterative Approximate Nonlinear Inference via Gaussian Message Passing on Factor Graphs".
% Some of the implementation details are my own. (Eike Petersen)
%
% INPUT: Y -> rxN matrix where r is the number of measurement channels and
% N is the length of each measured signal.
% A -> System matrix.
% C -> Observation matrix or function.
% Q -> Process noise covariance.
% Should be either of the following:
% - mxm, specifying a constant matrix.
% - mxmxN, specifying a time-varying matrix.
% - 1xm, specifying the diagonal of a constant
% matrix.
% - Nxm, specifying a time-varying diagonal
% matrix.
% R -> 1xr vector with oberservation noise covariance
% matrix diagonal entries. If time-varying, this
% should be Nxr.
% x0 -> Vector of length m with initial state. (Optional)
% P0 -> mxm matrix with initial state covariance. (Optional)
% handle_nans -> handle 'nan' values in measurements or
% observation matrices by simply treating this
% measurement as completely unknown (infinite
% measurement variance). Default is true.
% xmin -> Lower bound for state values. (Optional)
% xmax -> Upper bound for state values. (Optional)
% quad_rule -> Quadrature rule to be used for linearization.
% (Optional)
% return_iter -> Instead of normal outputs, return a cell array
% for each output signal, where each cell
% contains the result of one filter/smoother
% iteration. (Optional)
% max_iter -> Maximum number of iterations for nonlinear
% filter/smoother. (Default is 20.)
% max_abs_diff_tol -> Tolerance for maximum absolute state
% difference between iterations. If the max abs
% diff is below this threshold, iterations are
% stopped. (Default is 1e-5.)
%
% OUTPUT: Xfilt -> mxN matrix with estimated states by
% Kalman filter
% Xsmoothed -> mxN matrix with estimated states by
% Rauch-Tung-Striebel smoother.
% MeasNoiseFilt -> Filtered measurement error estimates
% MeasNoiseSmoothed -> Smoothed measurement error estimates
% iter -> Number of iterations the nonlinear
% smoother has been run for.
% innovation -> Time course of the innovation signal / filter prediction errors
%
% Note that in the nonlinear, iterative case, only filter/smoother results
% from the last iteration are returned! This means that the return
% 'filter' results are _not_ "real-time". If you want to see results of
% all iterations, pass 'return_iter' = true.
%
% This is also true for the innovation signal - it's also from the last iteration.
%
%
% Eike Petersen, 2015-2021
%% INPUT HANDLING
p = inputParser;
is_mat_or_list_of_mats = @(M)isnumeric(M) && ndims(M) <= 3;
is_mat_or_list_of_mats_or_func_handle = ...
@(M) is_mat_or_list_of_mats(M) || isa(M, 'function_handle');
% Positional arguments
addRequired(p, 'Y', @ismatrix);
addRequired(p, 'A', is_mat_or_list_of_mats_or_func_handle);
addRequired(p, 'C', is_mat_or_list_of_mats_or_func_handle);
addRequired(p, 'Q', is_mat_or_list_of_mats);
addRequired(p, 'R', is_mat_or_list_of_mats);
% Name-value arguments
addOptional(p, 'x0', [], @(x) isnumeric(x) && isvector(x));
addOptional(p, 'P0', [], @(x) isnumeric(x) && ismatrix(x));
addParameter(p, 'handle_nans', true, @islogical);
addParameter(p, 'xmin', [], @(x) isnumeric(x) && isvector(x));
addParameter(p, 'xmax', [], @(x) isnumeric(x) && isvector(x));
addParameter(p, 'quad_rule', [], @(f) isa(f, 'function_handle'));
addParameter(p, 'return_iter', false, @islogical);
addParameter(p, 'max_iter', 20, @(x) isscalar(x) && round(x) == x && x >= 1);
addParameter(p, 'max_abs_diff_tol', 1e-5, @(x) isscalar(x) && x > 0);
parse(p, Y, A, C, Q, R, varargin{:})
handle_nans = p.Results.handle_nans;
return_iter = p.Results.return_iter;
max_iter = p.Results.max_iter;
max_abs_diff_tol = p.Results.max_abs_diff_tol;
if isempty(p.Results.x0)
if ~isa(A, 'function_handle')
x0 = zeros(size(A, 1), 1);
else
error('Must provide value for x0 if A is a function handle.');
end
else
x0 = p.Results.x0;
end
m = length(x0);
if isempty(p.Results.P0)
P0 = 1e7 * eye(m);
else
P0 = p.Results.P0;
end
if isempty(p.Results.xmin)
xmin = -inf * ones(size(x0));
else
xmin = p.Results.xmin;
end
if isempty(p.Results.xmax)
xmax = inf * ones(size(x0));
else
xmax = p.Results.xmax;
end
if isempty(p.Results.quad_rule)
quad_rule = @sigma_points_classic;
else
quad_rule = p.Results.quad_rule;
end
%% INITIALIZATION
[r, N] = size(Y);
% Process noise covariance
if ndims(Q) == 1
% single diagonal
assert(length(Q) == m);
elseif ndims(Q) == 2
assert(size(Q, 1) == 1 || size(Q, 1) == m || size(Q, 1) == N);
assert(size(Q, 2) == m);
else
assert(ndims(Q) == 3)
assert(size(Q, 3) == N);
assert(size(Q, 1) == m && size(Q, 2) == m);
end
Q_upper_block_size = [];
if nargout > 5
innovation = zeros(r, N);
end
function Qi = get_Qi(ii)
if ndims(Q) == 3
Qi = Q(:, :, ii);
% Automatically inferring block size anew each iteration is very
% inefficient. Set block size to full.
Q_upper_block_size = size(Qi, 1);
else
if all(size(Q) == [m, m])
Qi = Q;
if isempty(Q_upper_block_size)
Q_upper_block_size = find_zero_block(Qi);
end
elseif all(size(Q) == [1, m])
Qi = diag(Q);
if isempty(Q_upper_block_size)
Q_upper_block_size = find_zero_block(Qi);
end
elseif all(size(Q) == [N, m])
Qi = diag(Q(ii, :));
% Automatically inferring block size anew each iteration is very
% inefficient. Set block size to full.
Q_upper_block_size = size(Qi, 1);
end
end
end
function [Ai, bi, Qi] = get_state_transition_model(ii, x_marginal, P_marginal, x_marginal_old, P_marginal_old)
if isa(A, 'function_handle')
if nargin(A) == 2
Afunci = @(x) A(x, ii);
elseif nargin(A) == 1
Afunci = A;
else
error('A function handle takes unexpected number of inputs.');
end
if nargin > 3
damping = 0.8;
%damping = 1;
x_marginal = damping * x_marginal + (1-damping) * x_marginal_old;
P_marginal = damping * P_marginal + (1-damping) * P_marginal_old;
end
[Ai, bi, Qi] = statistical_linearization(Afunci, x_marginal, P_marginal, quad_rule);
% Combine linearization noise with modeled process noise
Qi = Qi + get_Qi(ii);
% Automatically inferring block size anew each iteration is very
% inefficient. Set block size to full.
Q_upper_block_size = size(Qi, 1);
else
% basic linear filter/smoother
% state transition matrix
if ndims(A) == 3
Ai = A(:, :, ii);
else
Ai = A;
end
% process noise covariance
Qi = get_Qi(ii);
% process noise mean
bi = zeros(size(x_marginal));
end
end
% Measurement noise covariance
assert(size(R, 2) == r);
assert(size(R, 1) == 1 || size(R, 1) == N);
function Ri = get_Ri(ii)
if size(R, 1) > 1
Ri = diag(R(ii, :));
else
Ri = diag(R);
end
end
function [Ci, di, Ri] = get_measurement_model(ii, x_marginal, P_marginal, x_marginal_old, P_marginal_old)
if isa(C, 'function_handle')
if nargin(C) == 2
Cfunci = @(x) C(x, ii);
elseif nargin(C) == 1
Cfunci = C;
else
error('C function handle takes unexpected number of inputs.');
end
if nargin > 3
damping = 0.8;
%damping = 1;
x_marginal = damping * x_marginal + (1-damping) * x_marginal_old;
P_marginal = damping * P_marginal + (1-damping) * P_marginal_old;
end
[Ci, di, Ri] = statistical_linearization(Cfunci, x_marginal, P_marginal, quad_rule);
% Combine linearization noise with modeled process noise
Ri = Ri + get_Ri(ii);
else
% basic linear filter/smoother
% measurement matrix
if ndims(C) == 3
Ci = C(:, :, ii);
assert(~any(isinf(Ci(:))))
else
Ci = C;
assert(~any(isinf(Ci(:))))
end
% measurement noise covariance
Ri = get_Ri(ii);
% measurement noise mean
di = zeros(size(x_marginal));
end
end
Xfilt = zeros(m, N);
Phat = zeros(m, m, N);
Xbar = zeros(m, N);
Pbar = zeros(m, m, N);
MeasNoiseFilt = zeros(r, N);
Xsmoothed = nan * ones(m, N);
Psmoothed = nan * ones(m, m, N);
S = nan * ones(m, m, N);
S_is_inv = zeros(N, 1);
Cis = zeros(r, m, N);
% Initialize innovation monitoring
innov_cov = zeros(r,r);
ydiff = zeros(r,1);
if ~(isa(A, 'function_handle') || isa(C, 'function_handle'))
% Everything is linar; no need to iterate!
% Perform standard RTS.
max_iter = 1;
end
max_abs_diff = inf;
max_abs_diff_last = inf;
iter = 0;
increasing_diff_steps = 0;
max_state_diff_filt = zeros(N, 1);
max_state_diff_smooth = zeros(N, 1);
% Iterate filter + smoother runs for improved linearization of nonlinear functions
% See Tronarp, Garcia-Fernandez and Särkkä (2018), Iterative Filtering and Smoothing in Nonlinear and
% Non-Gaussian Systems Using Conditional Moments
% and
% Herzog, Petersen, Rostalski (2019),
% Iterative Approximate Nonlinear Inference via Gaussian Message Passing on Factor Graphs
%
% (The specific version with iterations both at the sample level and the overall filter/smoother
% level and additional damping is described in neither of those publications.)
%
while iter < max_iter && max_abs_diff > max_abs_diff_tol && increasing_diff_steps < 5
%% FILTERING
P_minus = P0;
x_minus = x0(:);
for ii = 1:N
Xbar(:,ii) = x_minus;
Pbar(:,:,ii) = P_minus';
% -----------
% UPDATE STEP
% -----------
% What are we linearizing the measurement function about?
if iter >= 1
x_plus = Xsmoothed(:, ii);
P_plus = Psmoothed(:, :, ii);
else
x_plus = x_minus;
P_plus = P_minus;
end
if nargout > 5
innovation(:, ii) = Y(:, ii) - Ci * x_plus;
end
max_abs_inner_diff = inf;
max_abs_inner_diff_last = inf;
inner_iter = 0;
increasing_inner_diff_steps = 0;
if isa(C, 'function_handle') && iter == 0
max_inner_iter = 5;
%max_inner_iter = 1;
else
% Either nothing to iteratively linearize here, or we're already past the first
% filter/smoother run
max_inner_iter = 1;
end
while inner_iter < max_inner_iter && max_abs_inner_diff > max_abs_diff_tol && increasing_inner_diff_steps < 2
% Linearize measurement function around current best guess
if iter > 1
[Ci, di, Ri] = get_measurement_model(ii, Xsmoothed(:, ii), Psmoothed(:, :, ii), ...
Xsmoothed_old(:, ii), Psmoothed_old(:, :, ii));
elseif iter == 1
[Ci, di, Ri] = get_measurement_model(ii, Xsmoothed(:, ii), Psmoothed(:, :, ii));
else
[Ci, di, Ri] = get_measurement_model(ii, x_plus, P_plus);
end
x_plus_old = x_plus;
x_plus = x_minus;
P_plus = P_minus;
% Sequential updates
for j = 1:r
innov_cov(j,j) = Ci(j,:) * P_plus * Ci(j,:)' + Ri(j,j);
K = P_plus * Ci(j,:)' / innov_cov(j,j);
ydiff(j) = Y(j,ii) - Ci(j,:) * x_plus - di(j);
% Output NaN handling
if handle_nans && (any(isnan(K)) || isnan(ydiff(j)))
% Something is unknown, hence assume Ri -> inf => K -> 0.
K = zeros(size(K));
ydiff(j) = 0; % value doesn't matter
KC = zeros(size(K*Ci(j, :))); % assuming Ci(j, :) < inf; see assertion above
else
KC = K * Ci(j, :);
end
x_plus = x_plus + K * ydiff(j);
% Joseph stabilized Kalman covariance matrix
if ~(isinf(Ri(j, j)) || isnan(Ri(j, j)))
P_plus = (eye(m) - KC) * P_plus * (eye(m) - KC)' + K * Ri(j,j) * K';
else
% If isnan(Ri(j,j)), we assume Ri(j,j) -> inf.
% The last summand K*Ri(j,j)*K' is what causes problems: this is 0*inf*0=nan.
% However, the analytical limit of this term is 0, so we just omit it.
P_plus = (eye(m) - KC) * P_plus * (eye(m) - KC)';
end
% Enforce symmetry of covariance matrix
P_plus = (P_plus + P_plus') / 2;
end
% State projection to ensure keeping constraints satisfied.
% This implements the approach detailed in section 2.4 of
% "Kalman filtering with state constraints: a survey of linear and
% nonlinear algorithms" by Dan Simon, IET Control Theory and Applications, 2009.
x_plus = min([xmax, max([xmin, x_plus], [], 2)], [], 2);
% Some iteration house-keeping...
if inner_iter > 0
max_abs_inner_diff = max(abs(x_plus_old - x_plus));
end
inner_iter = inner_iter + 1;
if max_inner_iter > 1
fprintf('Sample %d, inner iteration %d: Max(abs(state diff))=%f.\n', ii, inner_iter, max_abs_inner_diff);
if max_abs_inner_diff > max_abs_inner_diff_last
increasing_inner_diff_steps = increasing_inner_diff_steps + 1;
else
increasing_inner_diff_steps = 0;
end
max_abs_inner_diff_last = max_abs_inner_diff;
end
end
Cis(:, :, ii) = Ci;
Xfilt(:, ii) = x_plus;
Phat(:, :, ii) = P_plus';
MeasNoiseFilt(:, ii) = Y(:, ii) - Ci * x_plus;
if return_iter && iter > 0
max_state_diff_filt(ii) = max(abs(x_plus - XfiltCell{iter}(:, ii)));
end
% ---------------
% PREDICTION STEP
% ---------------
if iter > 1
[Ai, bi, Qi] = get_state_transition_model(ii, Xsmoothed(:, ii), Psmoothed(:, :, ii), ...
Xsmoothed_old(:, ii), Psmoothed_old(:, :, ii));
elseif iter > 0
[Ai, bi, Qi] = get_state_transition_model(ii, Xsmoothed(:, ii), Psmoothed(:, :, ii));
else
[Ai, bi, Qi] = get_state_transition_model(ii, Xfilt(:, ii), Phat(:, :, ii));
end
x_minus = Ai * x_plus + bi;
P_minus = Ai * P_plus * Ai' + Qi;
% Store matrix for smoothing step
[S(:, :, ii), S_is_inv(ii)] = calc_smoothing_S(Ai, Qi, P_plus', P_minus', Q_upper_block_size);
end
if iter > 0
Xsmoothed_old = Xsmoothed;
Psmoothed_old = Psmoothed;
end
%% SMOOTHING
% ----------
% Rauch-Tung-Striebel-type smoothing, see, e.g., Simo Särkkä (2013):
% "Bayesian Filtering and Smoothing"
Psmoothed(:, :, N) = Phat(:, :, N);
Xsmoothed(:, N) = Xfilt(:, N);
MeasNoiseSmoothed = zeros(size(Y, 1), N);
MeasNoiseSmoothed(:, N) = MeasNoiseFilt(:, N);
% Set up warning handling to prevent spamming the command line in case of
% ill conditioning
warning('off', 'MATLAB:illConditionedMatrix');
warning('off', 'MATLAB:nearlySingularMatrix');
warning('off', 'MATLAB:singularMatrix');
singular_matrix_warnings_found = 0;
lastwarn('');
% Keep track of differences between the current and the previous
% smoothing run
if iter > 0
max_abs_diff = 0;
else
% This is the first run; there is nothing to compare with
max_abs_diff = inf;
end
for ii = N - 1:-1:1
xs_old = Xsmoothed(:, ii);
if S_is_inv(ii)
Xsmoothed(:, ii) = Xfilt(:, ii) + S(:, :, ii) \ (Xsmoothed(:, ii + 1) - Xbar(:, ii + 1));
else
Xsmoothed(:, ii) = Xfilt(:, ii) + S(:, :, ii) * (Xsmoothed(:, ii + 1) - Xbar(:, ii + 1));
end
% State projection to ensure keeping constraints satisfied.
% This implements the approach detailed in section 2.4 of
% "Kalman filtering with state constraints: a survey of linear and
% nonlinear algorithms" by Dan Simon, IET Control Theory and
% Applications, 2009.
Xsmoothed(:, ii) = min([xmax, max([xmin, Xsmoothed(:, ii)], [], 2)], [], 2);
if S_is_inv(ii)
Psmoothed(:, :, ii) = Phat(:, :, ii) - (S(:, :, ii) \ (Pbar(:, :, ii+1) - Psmoothed(:, :, ii+1))) / S(:, :, ii)';
else
Psmoothed(:, :, ii) = Phat(:, :, ii) - S(:, :, ii) * (Pbar(:, :, ii+1) - Psmoothed(:, :, ii+1)) * S(:, :, ii)';
end
if iter > 0 && ~any(isnan(xs_old))
max_abs_diff = max(max_abs_diff, max(abs(xs_old - Xsmoothed(:, ii)), [], 'all'));
max_state_diff_smooth(ii) = max(abs(Xsmoothed(:, ii) - xs_old));
end
MeasNoiseSmoothed(:, ii) = Y(:, ii) - Cis(:, :, ii) * Xsmoothed(:, ii);
[~, msgidlast] = lastwarn;
if strcmp(msgidlast,'MATLAB:illConditionedMatrix') || strcmp(msgidlast,'MATLAB:nearlySingularMatrix') ...
|| strcmp(msgidlast, 'MATLAB:singularMatrix')
singular_matrix_warnings_found = singular_matrix_warnings_found + 1;
else
disp(msgidlast)
end
lastwarn('');
end
iter = iter + 1;
if max_iter > 1
fprintf('Iteration %d: Max(abs(state diff))=%f.\n', iter, max_abs_diff);
if max_abs_diff > max_abs_diff_last
increasing_diff_steps = increasing_diff_steps + 1;
else
increasing_diff_steps = 0;
end
max_abs_diff_last = max_abs_diff;
end
if return_iter
XfiltCell{iter} = Xfilt;
XsmoothedCell{iter} = Xsmoothed;
MeasNoiseFiltCell{iter} = MeasNoiseFilt;
MeasNoiseSmoothedCell{iter} = MeasNoiseSmoothed;
end
end
if singular_matrix_warnings_found > 0
warning('Matrix close to singular or singular during %d smoothing steps.', singular_matrix_warnings_found);
end
warning('on', 'MATLAB:illConditionedMatrix');
warning('on', 'MATLAB:nearlySingularMatrix');
warning('on', 'MATLAB:singularMatrix');
fprintf('Ran %d filter/smoother iterations.\n', iter);
if iter == max_iter
disp('Stopping reason: max number of iterations.');
elseif max_abs_diff < max_abs_diff_tol
disp('Stopping reason: max_abs_diff < max_abs_diff_tol.');
elseif increasing_diff_steps == 2
disp('Stopping reason: Between-iteration diffs have increased five times in a row.');
else
disp('Stopping reason unknown. This should not occur?');
end
if return_iter
Xfilt = XfiltCell;
Xsmoothed = XsmoothedCell;
MeasNoiseFilt = MeasNoiseFiltCell;
MeasNoiseSmoothed = MeasNoiseSmoothedCell;
end
end
function [S, S_is_inv] = calc_smoothing_S(Ai, Qi, P_plus_i, P_minus_next, Qi_upper_block_size)
m = size(Ai, 1);
if ~any(Qi(:))
% Qi == 0. In this case, Pbar = P_{k+1}^- = A * P_{k-1}^T * A^T
% and we have (analytically) that S = A^-1.
S = Ai;
S_is_inv = true;
else
if nargin < 5 || Qi_upper_block_size == m
% use standard text book formula
S = P_plus_i * Ai' / P_minus_next;
else
% Attempt to exploit (partially zero-Q) block matrix structure!
% requires blockinv function from
% https://github.com/wrongu/block-matrix-inverse-tools to be
% available on the path
S = P_plus_i * Ai' * blockinv(P_minus_next, [Qi_upper_block_size, m-Qi_upper_block_size]);
end
S_is_inv = false;
end
end