-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_psych_dual_mnist.py
190 lines (148 loc) · 5.87 KB
/
cnn_psych_dual_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import numpy
import random
# Based on https://nextjournal.com/gkoehler/pytorch-mnist
def getRandom(min, max):
return random.randint(min, max)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x)
n_epochs = 10
batch_size_train = 64
batch_size_test = 1000
correct_learning_rate = 0.01
cor_lr_change = correct_learning_rate * 0
incorrect_learning_rate = 0.01
incor_lr_change = incorrect_learning_rate * 0
momentum = 0.5
log_interval = 1000
random_seed = 1
torch.backends.cudnn.enabled = False
torch.manual_seed(random_seed)
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('/files/', train=True, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=batch_size_train, shuffle=True)
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST('/files/', train=False, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
(0.1307,), (0.3081,))
])),
batch_size=batch_size_test, shuffle=True)
network = Net()
optimizer = optim.SGD(network.parameters(), lr=correct_learning_rate,
momentum = momentum)
cor_min_rate = 100
cor_max_rate = 200
incor_min_rate = 100
incor_max_rate = 100
train_losses = []
train_counter = []
test_losses = []
test_counter = [i*len(train_loader.dataset) for i in range(n_epochs * 1)]
test_epoch_acc_output = []
epoch_acc_output = []
cor_lr_output = []
incor_lr_output = []
def test():
network.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = network(data)
test_loss += F.nll_loss(output, target, size_average=False).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).sum()
test_loss /= len(test_loader.dataset)
test_losses.append(test_loss)
print('Test set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
acc = 100. * correct.item() / len(test_loader.dataset)
test_epoch_acc_output.append(acc)
# Training
for epoch in range(1, n_epochs + 1):
train_correct = 0.
train_total = 0.
correct_count = 0
incorrect_count = 0
correct_rand_ratio = getRandom(cor_min_rate, cor_max_rate)
incorrect_rand_ratio = getRandom(incor_min_rate, incor_max_rate)
network.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = network(data)
loss = F.nll_loss(output, target)
loss.backward()
# Checking for our extra reinforcement
predicted = output.data.max(1, keepdim=True)[1]
current_correct = predicted.eq(target.data.view_as(predicted)).sum()
current_incorrect = batch_size_train - current_correct
train_correct += current_correct
train_total += Variable(target).size(0)
ex_correct_or_incorrect = 0
if current_correct >= current_incorrect:
correct_count += current_correct
incorrect_count += current_incorrect
ex_correct_or_incorrect = 1
else:
correct_count += current_correct
incorrect_count += current_incorrect
ex_correct_or_incorrect = 0
if correct_count >= correct_rand_ratio:
correct_learning_rate = correct_learning_rate - cor_lr_change
correct_count = 0
correct_rand_ratio = getRandom(cor_min_rate, cor_max_rate)
elif incorrect_count >= incorrect_rand_ratio:
incorrect_learning_rate = incorrect_learning_rate + incor_lr_change
incorrect_count = 0
incorrect_rand_ratio = getRandom(incor_min_rate, incor_max_rate)
for param_group in optimizer.param_groups:
if ex_correct_or_incorrect:
param_group['lr'] = correct_learning_rate
else:
param_group['lr'] = incorrect_learning_rate
optimizer.step()
cor_lr_output.append(correct_learning_rate)
incor_lr_output.append(incorrect_learning_rate)
e_acc = (100. * (train_correct.item() / train_total))
print("Accuracy of network for epoch %d: %.4f %%" % (epoch, e_acc))
epoch_acc_output.append(e_acc)
test()
print("Training acc per epoch: ", epoch_acc_output)
print("Testing acc per epoch: ", test_epoch_acc_output)
print("Final Correct Learning rate is", correct_learning_rate)
print("Final Incorrect Learning rate is", incorrect_learning_rate)
test_epoch_print = numpy.asarray(test_epoch_acc_output)
numpy.savetxt("test_out.csv", test_epoch_print, delimiter=",")
epoch_print = numpy.asarray(epoch_acc_output)
numpy.savetxt("train_out.csv", epoch_print, delimiter=",")
cor_lr_print = numpy.asarray(cor_lr_output)
numpy.savetxt("cor_lr_out.csv", cor_lr_print, delimiter=",")
incor_lr_print = numpy.asarray(incor_lr_output)
numpy.savetxt("incor_lr_out.csv", incor_lr_print, delimiter=",")