-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
234 lines (176 loc) · 6.93 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
""" Utilities """
import os
import logging
import shutil
import torch
import numpy as np
import multiprocessing
import torch.nn.functional as F
import shapely.geometry
import shapely.affinity
from scipy.optimize import brentq
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, roc_auc_score, auc
def get_logger(file_path, distributed_rank=0):
""" Make python logger """
logger = logging.getLogger('palm_cnn')
if distributed_rank > 0:
return logger
log_format = '%(asctime)s | %(message)s'
formatter = logging.Formatter(log_format, datefmt='%m/%d %I:%M:%S %p')
file_handler = logging.FileHandler(file_path)
file_handler.setFormatter(formatter)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
logger.setLevel(logging.INFO)
return logger
def param_size(model):
""" Compute parameter size in MB """
n_params = sum(np.prod(v.size()) for k, v in model.named_parameters())
return n_params / 1024. / 1024.
def save_checkpoint(state, ckpt_dir, is_best=False, epoch=0):
filename = os.path.join(ckpt_dir, 'checkpoint_{}.pth.tar'.format(epoch))
torch.save(state, filename)
last_filename = os.path.join(ckpt_dir, 'last.pth.tar')
shutil.copyfile(filename, last_filename)
if is_best:
best_filename = os.path.join(ckpt_dir, 'best.pth.tar')
shutil.copyfile(filename, best_filename)
class AverageMeter():
""" Computes and stores the average and current value """
def __init__(self):
self.reset()
def reset(self):
""" Reset all statistics """
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
""" Update statistics """
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
""" Computes the precision@k for the specified values of k """
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
# one-hot case
if target.ndimension() > 1:
target = target.max(1)[1]
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0)
res.append(correct_k.mul_(1.0 / batch_size))
return res
def rankn_all2all(label, dist, n=1):
idx = dist.argsort(dim=1)
gt = label.view(label.shape[0], 1) == label.view(1, label.shape[0])
count = 0
for i in range(gt.shape[0]):
if True in gt[i,idx[i]][1:n+1]:
count += 1
rank_n = count/gt.shape[0]
return rank_n
def rankn_test2register(label, dist, register_list, test_list, n=1):
num_register = len(register_list)
num_test = len(test_list)
num_classes = len(label.unique())
dist_test2register = dist[register_list]
dist_test2register = dist_test2register[:, test_list]
label_test2register = label[register_list]
dist_test2class = -F.max_pool2d(-dist_test2register.view(1, num_register, -1), kernel_size=(4, 1), stride=(4, 1))
label_test2class = -F.max_pool2d(-label_test2register.view(1, num_register, -1), kernel_size=(4, 1), stride=(4, 1))
gt_all = label_test2class.view(num_classes, 1) == label[test_list].view(1, num_test)
idx = dist_test2class.squeeze().argsort(dim=0)
count = 0
for i in range(num_test):
if True in gt_all[idx[:,i], i][:n]:
count += 1
rank_n = count/num_test
return rank_n
def eer_all2all(label, dist):
n = label.shape[0]
gt = label.view(n, 1) == label.view(1,n)
score = 1 - dist
mat_select = (1 - torch.eye(n)).bool()
gt_all = gt[mat_select]
score_all = score[mat_select]
fpr, tpr, thresholds = roc_curve(gt_all.cpu().numpy(), score_all.cpu().numpy())
eer = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)
thresh = interp1d(fpr, thresholds)(eer)
return eer
def eer_test2register(label, dist, register_list, test_list):
num_register = len(register_list)
num_test = len(test_list)
num_classes = len(label.unique())
score = 1 - dist
score_test2register = score[register_list]
score_test2register = score_test2register[:, test_list]
label_test2register = label[register_list]
score_test2class = F.max_pool2d(score_test2register.view(1, num_register, -1), kernel_size=(4,1), stride=(4,1))
label_test2class = F.max_pool2d(label_test2register.view(1, num_register, -1), kernel_size=(4,1), stride=(4,1))
gt_all = label_test2class.view(num_classes, 1) == label[test_list].view(1, num_test)
fpr, tpr, thresholds = roc_curve(gt_all.view(-1).cpu().numpy(), score_test2class.view(-1).cpu().numpy())
eer = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)
thresh = interp1d(fpr, thresholds)(eer)
return eer
def process_map(r):
return torch.Tensor([torch.mean(r[:i + 1].float()) for i in range(r.shape[0]) if r[i]])
def map(label, dist):
if len(label) > 1000:
idx = dist.argsort(dim=1)
gt = label.view(label.shape[0], 1) == label.view(1, label.shape[0])
rs = [gt[i][idx[i]] for i in range(gt.shape[0])]
pool = multiprocessing.Pool(4)
result = []
for r in rs:
p = pool.apply_async(process_map, args=(r.cpu(),))
result.append(p)
pool.close()
pool.join()
trec_precisions = []
for r in result:
trec_precisions.append(r.get())
trec_precisions = torch.cat(trec_precisions)
mAP = torch.mean(trec_precisions)
else:
idx = dist.argsort(dim=1)
gt = label.view(label.shape[0], 1) == label.view(1, label.shape[0])
rs = [gt[i][idx[i]] for i in range(gt.shape[0])]
trec_precisions = []
for r in rs:
trec_precision = torch.Tensor([torch.mean(r[:i+1].float()) for i in range(r.shape[0]) if r[i]])
trec_precisions.append(trec_precision)
trec_precisions = torch.cat(trec_precisions)
mAP = torch.mean(trec_precisions)
return mAP.item()
def iou(box1, box2, theta1, theta2):
box1, box2, theta1, theta2 = box1.cpu().numpy(), box2.cpu().numpy(), theta1.cpu().numpy(), theta2.cpu().numpy()
iou = []
for b1, b2, t1, t2 in zip(box1, box2, theta1, theta2):
r1 = shapely.geometry.box(*b1)
r1 = shapely.affinity.rotate(r1, t1)
try:
r2 = shapely.geometry.box(*b2)
r2 = shapely.affinity.rotate(r2, t2)
I = r1.intersection(r2).area
O = r1.union(r2).area
except:
I = 0
O = 1
iou.append(I/(O+1))
iou = np.array(iou)
return iou.mean()
def nms(heat, kernel=3):
pad = (kernel - 1) // 2
hmax = F.max_pool2d(heat, (kernel, kernel), stride=1, padding=pad)
keep = (hmax == heat).float()
return heat * keep