forked from AICoE/prometheus-data-science
-
Notifications
You must be signed in to change notification settings - Fork 4
/
graphing_ts.py
143 lines (127 loc) · 5.05 KB
/
graphing_ts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import pickle
import numpy as np
from numpy import fft
import pandas as pd
import warnings
import matplotlib.pyplot as plt
warnings.filterwarnings("ignore")
from scipy.stats import chisquare
import collections
import bz2
def fourierExtrapolation(x, n_predict, n_harm):
n = x.size
#n_harm = 100 # number of harmonics in model
t = np.arange(0, n)
p = np.polyfit(t, x, 1) # find linear trend in x
x_notrend = x - p[0] * t # detrended x
x_freqdom = fft.fft(x_notrend) # detrended x in frequency domain
f = fft.fftfreq(n) # frequencies
indexes = np.arange(n).tolist()
# sort indexes by frequency, lower -> higher
indexes.sort(key = lambda i:np.absolute(f[i]))
t = np.arange(0, n + n_predict)
restored_sig = np.zeros(t.size)
for i in indexes[:1 + n_harm * 2]:
ampli = np.absolute(x_freqdom[i]) / n # amplitude
phase = np.angle(x_freqdom[i]) # phase
restored_sig += ampli * np.cos(2 * np.pi * f[i] * t + phase)
return restored_sig + p[0] * t
def fit_model(train, n_predict):
model = collections.namedtuple('model',['upper','lower','forecast'])
minimum = np.min(train)
stddev = np.std(train)
model.upper = np.max(train) + stddev
model.lower = minimum - stddev
if minimum > 0:
model.lower = max(0, model.lower)
# n_harm = 1/3 of number of data points was chosen by visual inspection
n_harm = int(len(train)/3)
model.forecast = fourierExtrapolation(train, n_predict, n_harm)
return model
def window_AD(forecast, test, win_size):
num_bins = 5
new_forecast = forecast[-len(test):]
# windows = [np.arange(win_size*i,win_size*(i+1)) for i in range(int(len(test)/win_size) + 1)]
# windows[-1] = np.arange(windows[-1][0], len(test))
win_test = test[1:win_size]
win_forecast = new_forecast[1:win_size]
p_vals = []
for j in range(0, len(test)):
print(j+len(forecast)-len(test))
win_test = test[1:win_size]
for i in range(0,len(test)):
test_hist, bin_edges = np.histogram(win_test, bins=num_bins)
big_vals = np.where(win_forecast > bin_edges[-1])
small_vals = np.where(win_forecast < bin_edges[0])
f_hist, bin_edges = np.histogram(win_forecast, bins=bin_edges)
# print(np.sum(test_hist))
# print(np.sum(f_hist))
f_hist[-1] = f_hist[-1] + len(big_vals)
f_hist[0] = f_hist[0] + len(small_vals)
test_hist = [x+1 for x in test_hist]
f_hist = [x+1 for x in f_hist]
# print(test_hist)
# print(f_hist)
vals = chisquare(f_hist, f_exp=test_hist )
# print(vals[1])
p_vals.append(vals[1])
# win_test = np.roll(win_test, 1)
new_forecast = np.roll(new_forecast, 1)
win_forecast = new_forecast[1:win_size]
# if p_val > .75:
# return True
print(np.max(np.array(p_vals)))
p_vals = []
test = np.roll(test, 1)
return False
def detect_anomalies(model, test):
if np.max(test) > model.upper:
print("yep")
#return "point-wise anomaly - upper bound exceeded\nbound: " + str(model.upper) + "\nexceeded value: " + str(np.max(test))
if np.min(test) < model.lower:
print('yep')
#return "point-wise anomaly - lower bound exceeded"
else:
# run histogram-based AD
if window_AD(model.forecast, test, 60):
return "5-min window anomaly detected"
return "running histogram-based AD"
return "no anomalies detected"
def graph(series):
x_series = np.arange(series.size)
plt.plot(x_series, series, 'b', label = 'x', linewidth = 3)
# pl.plot(x_test, test, 'g*', label = 'x', linewidth = 3)
#pl.plot(x_extrapolation, extrapolation, 'r', label = 'extrapolation')
plt.legend()
pkl_file = open("../pkl_data/http_request_duration_microseconds_quantile_dataframes.pkl", "rb")
dfs = pickle.load(pkl_file)
pkl_file.close()
print(type(dfs))
key_vals = list(dfs.keys())
print(len(key_vals))
pkl_file = open("../data/real_data_test.pkl", "wb")
pickle.dump(dfs, pkl_file)
pkl_file.close()
i = 0
for key in key_vals[0:800]:
print(key)
df = dfs["{'__name__': 'http_request_duration_microseconds', 'beta_kubernetes_io_arch': 'amd64', 'beta_kubernetes_io_instance_type': 'm4.xlarge', 'beta_kubernetes_io_os': 'linux', 'failure_domain_beta_kubernetes_io_region': 'us-east-2', 'failure_domain_beta_kubernetes_io_zone': 'us-east-2a', 'handler': 'prometheus', 'hostname': 'free-stg-node-compute-e0756', 'instance': 'ip-172-31-76-144.us-east-2.compute.internal', 'job': 'kubernetes-nodes-exporter', 'kubernetes_io_hostname': 'ip-172-31-76-144.us-east-2.compute.internal', 'logging_infra_fluentd': 'true', 'node_role_kubernetes_io_compute': 'true', 'quantile': '0.99', 'region': 'us-east-2', 'type': 'compute'}"]
# df = dfs[key]
df["values"] = df["values"].apply(pd.to_numeric)
df = df.sort_values(by=['timestamps'])
vals = np.array(df["values"].tolist())
# train = vals[0:int(0.7*len(vals))]
# test = vals[int(0.7*len(vals)):]
# print(np.max(test))
# print(np.where(test == np.max(test)))
# x_vals = np.arange(0,len(vals))
# x_test = x_vals[int(0.7*len(vals)):]
# x_train = x_vals[0:int(0.7*len(vals))]
# mdl = fit_model(train, len(test))
print(i)
i += 1
# print(detect_anomalies(mdl, test))
graph(vals)
# plt.show()
plt.savefig("../time_series_graphing/graphs_http_total/fourier_" + str(i) + ".png")
plt.close()