-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
306 lines (270 loc) · 12.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import os
from os import listdir
from os.path import isfile, join
import time
import torch
import numpy as np
import utils
import logging
from collections import defaultdict
import cv2
from torchvision.utils import save_image
from options import *
from model.hidden import Hidden
from average_meter import AverageMeter
BINS = 256
def calculate_image_entropy(imgs):
ret = []
for img in imgs:
marg = np.histogramdd(np.ravel(img), bins = BINS)[0]/img.size
marg = list(filter(lambda p: p > 0, np.ravel(marg)))
entropy = -np.sum(np.multiply(marg, np.log2(marg)))
ret.append(entropy/8)
return np.array(ret)
def cropImg(size,img_tensor,WIDTH,ALPHA):
imgs=[]
modified_imgs = []
entropies = []
batch = int(img_tensor.shape[0])
channel = int(img_tensor.shape[1])
h = int(img_tensor.shape[2])
w = int(img_tensor.shape[3])
n = int(h/size)
i = 0
img_tensor1 = img_tensor.cpu().detach().numpy()
img_entropy = calculate_image_entropy(img_tensor1)
while(i*size < h):
j = 0
while(j*size < w):
i_n =int(i*size)
j_n = int(j*size)
img = img_tensor[0:batch,0:channel,i_n:(i_n+size),j_n:(j_n+size)]
modified_img = img_tensor1[0:batch,0:channel,i_n:(i_n+size),j_n:(j_n+size)]
if j_n + size + WIDTH <= w:
modified_img[0:batch,0:channel, :, size-WIDTH:size] *= (1-ALPHA)
modified_img[0:batch,0:channel, :, size-WIDTH:size] +=\
ALPHA*img_tensor1[0:batch,0:channel, i_n:i_n + size, j_n + size:j_n + size+WIDTH]
if i_n + size + WIDTH <= h:
modified_img[0:batch,0:channel, size-WIDTH:size, :] *= (1-ALPHA)
modified_img[0:batch,0:channel, size-WIDTH:size, :] +=\
ALPHA*img_tensor1[0:batch,0:channel, i_n+size:i_n + size + WIDTH, j_n:j_n + size]
imgs.append(img)
#print(np.sum(img.cpu().detach().numpy() - modified_img))
modified_imgs.append(torch.tensor(modified_img))
entropies.append(torch.tensor(img_entropy[0:len(modified_img)]))
#torchvision.utils.save_image(img,"cropped"+str(i_n)+str(j_n)+".jpg")
j = j + 1
i = i + 1
return imgs,modified_imgs,entropies
def concatImgs(imgs,block_number):
img_len = len(imgs)
i = 0
img_cat =[]
block_num = block_number*block_number
while(i < block_num):
img_col = torch.cat([imgs[0+i],imgs[1+i]],3)
for j in range(2,block_number):
img_col = torch.cat([img_col,imgs[j+i]],3)
img_cat.append(img_col)
i = i + block_number
img = torch.cat([img_cat[0],img_cat[1]],2)
#print(img.shape)
for i in range(2,len(img_cat)):
img = torch.cat([img,img_cat[i]],2)
#img = torch.cat([img_cat[0],img_cat[1],img_cat[2],img_cat[3]],2)
return img
def blocking_value(encoded_imgs,batch,block_size,block_number):
#blocking effect value
Total = 0
Vcount = 0
Hcount = 0
V_average = 0
H_average = 0
for idx in range(0,batch):
V_average = 0
H_average = 0
for i in range(0,len(encoded_imgs)-1):
if((i+1) % block_number != 0):
img = encoded_imgs[i][idx][0].cpu().detach().numpy()
img_next = encoded_imgs[i+1][idx][0].cpu().detach().numpy()
for j in range(0,block_size):
distinct = np.abs(img[j][block_size-1]-img_next[j][0])
V_average = V_average+distinct
Total = Total +1
if(distinct > 0.25):
Vcount = Vcount+1
for i in range(0,len(encoded_imgs)-block_number):
img = encoded_imgs[i][idx][0].cpu().detach().numpy()
img_next = encoded_imgs[i+block_number][idx][0].cpu().detach().numpy()
for j in range(0,block_size):
distinct = np.abs(img[block_size-1][j]-img_next[0][j])
H_average = H_average+distinct
Total = Total + 1
if(distinct > 0.25):
Hcount = Hcount+1
blocking_loss = (Vcount+Hcount)/(Total)
return blocking_loss
def train(model: Hidden,
device: torch.device,
hidden_config: HiDDenConfiguration,
train_options: TrainingOptions,
this_run_folder: str,
tb_logger):
"""
Trains the HiDDeN model
:param model: The model
:param device: torch.device object, usually this is GPU (if avaliable), otherwise CPU.
:param hidden_config: The network configuration
:param train_options: The training settings
:param this_run_folder: The parent folder for the current training run to store training artifacts/results/logs.
:param tb_logger: TensorBoardLogger object which is a thin wrapper for TensorboardX logger.
Pass None to disable TensorboardX logging
:return:
"""
train_data, val_data = utils.get_data_loaders(hidden_config, train_options)
block_size = hidden_config.block_size
block_number = int(hidden_config.H/hidden_config.block_size)
val_folder = train_options.validation_folder
loss_type = train_options.loss_mode
m_length = hidden_config.message_length
alpha = train_options.alpha
img_names = listdir(val_folder+"/valid_class")
img_names.sort()
out_folder = train_options.output_folder
default = train_options.default
beta = train_options.beta
crop_width = int(beta*block_size)
file_count = len(train_data.dataset)
if file_count % train_options.batch_size == 0:
steps_in_epoch = file_count // train_options.batch_size
else:
steps_in_epoch = file_count // train_options.batch_size + 1
print_each = 10
images_to_save = 8
saved_images_size = (512, 512)
icount = 0
plot_block = []
for epoch in range(train_options.start_epoch, train_options.number_of_epochs + 1):
logging.info('\nStarting epoch {}/{}'.format(epoch, train_options.number_of_epochs))
logging.info('Batch size = {}\nSteps in epoch = {}'.format(train_options.batch_size, steps_in_epoch))
training_losses = defaultdict(AverageMeter)
epoch_start = time.time()
step = 1
#train
for image, _ in train_data:
image = image.to(device)
#crop imgs into blocks
imgs, modified_imgs, entropies = cropImg(block_size,image,crop_width,alpha)
bitwise_arr=[]
main_losses = None
encoded_imgs = []
batch = 0
for img, modified_img, entropy in zip(imgs,modified_imgs, entropies):
img=img.to(device)
modified_img = modified_img.to(device)
entropy = entropy.to(device)
message = torch.Tensor(np.random.choice([0, 1], (img.shape[0], m_length))).to(device)
losses, (encoded_images, noised_images, decoded_messages) = \
model.train_on_batch([img, message, modified_img, entropy,loss_type])
encoded_imgs.append(encoded_images)
batch = encoded_images.shape[0]
#get loss in the last block
if main_losses is None:
main_losses = losses
for k in losses:
main_losses[k] = losses[k]/len(imgs)
else:
for k in main_losses:
main_losses[k] += losses[k]/len(imgs)
#blocking effect loss calculation
blocking_loss = blocking_value(encoded_imgs,batch,block_size,block_number)
#update bitwise training loss
for name, loss in main_losses.items():
if(default == False and name == 'blocking_effect'):
training_losses[name].update(blocking_loss)
else:
training_losses[name].update(loss)
#statistic
if step % print_each == 0 or step == steps_in_epoch:
logging.info(
'Epoch: {}/{} Step: {}/{}'.format(epoch, train_options.number_of_epochs, step, steps_in_epoch))
utils.log_progress(training_losses)
logging.info('-' * 40)
step += 1
train_duration = time.time() - epoch_start
logging.info('Epoch {} training duration {:.2f} sec'.format(epoch, train_duration))
logging.info('-' * 40)
utils.write_losses(os.path.join(this_run_folder, 'train.csv'), training_losses, epoch, train_duration)
if tb_logger is not None:
tb_logger.save_losses(training_losses, epoch)
tb_logger.save_grads(epoch)
tb_logger.save_tensors(epoch)
first_iteration = True
validation_losses = defaultdict(AverageMeter)
logging.info('Running validation for epoch {}/{}'.format(epoch, train_options.number_of_epochs))
#validation
ep_blocking = 0
ep_total = 0
for image, _ in val_data:
image = image.to(device)
#crop imgs
imgs, modified_imgs, entropies = cropImg(block_size,image,crop_width,alpha)
bitwise_arr=[]
main_losses = None
encoded_imgs = []
batch = 0
for img, modified_img, entropy in zip(imgs,modified_imgs, entropies):
img=img.to(device)
modified_img = modified_img.to(device)
entropy = entropy.to(device)
message = torch.Tensor(np.random.choice([0, 1], (img.shape[0], m_length))).to(device)
losses, (encoded_images, noised_images, decoded_messages) = \
model.train_on_batch([img, message, modified_img, entropy,loss_type])
encoded_imgs.append(encoded_images)
batch = encoded_images.shape[0]
#get loss in the last block
if main_losses is None:
main_losses = losses
for k in losses:
main_losses[k] = losses[k]/len(imgs)
else:
for k in main_losses:
main_losses[k] += losses[k]/len(imgs)
#blocking value for plotting
blocking_loss = blocking_value(encoded_imgs,batch,block_size,block_number)
ep_blocking = ep_blocking+ blocking_loss
ep_total = ep_total+1
for name, loss in main_losses.items():
if(default == False and name == 'blocking_effect'):
validation_losses[name].update(blocking_loss)
else:
validation_losses[name].update(loss)
#concat image
encoded_images = concatImgs(encoded_imgs,block_number)
#save_image(encoded_images,"enc_img"+str(epoch)+".png")
#save_image(image,"original_img"+str(epoch)+".png")
if first_iteration:
if hidden_config.enable_fp16:
image = image.float()
encoded_images = encoded_images.float()
utils.save_images(image.cpu()[:images_to_save, :, :, :],
encoded_images[:images_to_save, :, :, :].cpu(),
epoch,
os.path.join(this_run_folder, 'images'), resize_to=saved_images_size)
first_iteration = False
#save validation in the last epoch
if(epoch == train_options.number_of_epochs):
if(train_options.ats):
for i in range(0,batch):
image = encoded_images[i].cpu()
image = (image + 1) / 2
f_dst = out_folder+"/"+img_names[icount]
save_image(image,f_dst)
icount = icount+1
#append block effect for plotting
plot_block.append(ep_blocking/ep_total)
utils.log_progress(validation_losses)
logging.info('-' * 40)
utils.save_checkpoint(model, train_options.experiment_name, epoch, os.path.join(this_run_folder, 'checkpoints'))
utils.write_losses(os.path.join(this_run_folder, 'validation.csv'), validation_losses, epoch,
time.time() - epoch_start)