-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_script_clusters_failure.py
465 lines (399 loc) · 23.2 KB
/
main_script_clusters_failure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import os
os.chdir('C:/Users/morenodu/OneDrive - Stichting Deltares/Documents/PhD/Paper_drought/data')
import xarray as xr
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import geopandas as gpd
import cartopy.crs as ccrs
import cartopy.io.shapereader as shpreader
from scipy import signal
from pylab import *
from mask_shape_border import mask_shape_border
from failure_probability import failure_probability
# Crop space to either US or soy states
usa = gpd.read_file('gadm36_USA_1.shp', crs="epsg:4326")
us1_shapes = list(shpreader.Reader('gadm36_USA_1.shp').geometries())
state_names = ['Iowa','Illinois','Minnesota','Indiana','Nebraska','Ohio', 'South Dakota','North Dakota', 'Missouri','Arkansas']
soy_us_states = usa[usa['NAME_1'].isin( state_names)]
# Crop space to either BR or soy states
bra = gpd.read_file('gadm36_BRA_1.shp', crs="epsg:4326")
br1_shapes = list(shpreader.Reader('gadm36_BRA_1.shp').geometries())
state_br_names = ['Mato Grosso','Rio Grande do Sul','Paraná']
soy_br_states = bra[bra['NAME_1'].isin(state_br_names)]
############### calendar
# mirca_2000 = xr.open_dataset("Soybeans.crop.calendar.nc")
# # plot
# plt.figure(figsize=(20,10)) #plot clusters
# ax=plt.axes(projection=ccrs.Mercator())
# mirca_2000['harvest'].plot(x='longitude', y='latitude',transform=ccrs.PlateCarree(), robust=True)
# ax.add_geometries(us1_shapes, ccrs.PlateCarree(),edgecolor='black', facecolor=(0,1,0,0.0))
# ax.set_extent([-125,-67,24,50], ccrs.PlateCarree())
# plt.show()
#%% START SIMULATIONS HERE
### yield model - WOFOST
start_date, end_date = '1901-12-31','2015-12-31' #80 is 770, 70 is 0.764, 50 is 0.742, 40 is 748, 1901 = 0.722
# DS_y=xr.open_dataset("yield_soy_1979-2012.nc",decode_times=False).sel(time=slice(1,31))
# DS_y['time'] = pd.to_datetime(list(range(1980, 2011)), format='%Y').year
# DS_y = DS_y.reindex(lat=DS_y.lat[::-1])
# DS_y = mask_shape_border(DS_y,soy_us_states) #US_shape
# DS_y = DS_y.dropna(dim = 'lon', how='all')
# DS_y = DS_y.dropna(dim = 'lat', how='all')
# DS_y_old = DS_y.sel(time=slice(start_date, end_date))
# # new version
DS_y2 = xr.open_dataset("yield_isimip_epic_3A_2.nc",decode_times=True).sel(lat=slice(0,50), lon=slice(-160,-10))
DS_y2 = mask_shape_border(DS_y2,soy_us_states) #US_shape
DS_y2 = DS_y2.dropna(dim = 'lon', how='all')
DS_y2 = DS_y2.dropna(dim = 'lat', how='all')
DS_y=DS_y2
DS_y=DS_y.sel(time=slice(start_date, end_date))
plt.plot(DS_y.to_dataframe().groupby(['time']).mean())
plt.show()
#second mask
ds_iizumi = xr.open_dataset("soybean_iizumi_1981_2016.nc")
ds_iizumi = ds_iizumi.rename({'latitude': 'lat', 'longitude': 'lon'})
DS_y = DS_y.where(DS_y['yield'].mean('time') > 0.5 )
DS_y = DS_y.where(ds_iizumi['yield'].mean('time') > 0.5 )
DS_y = DS_y.dropna(dim = 'lon', how='all')
DS_y = DS_y.dropna(dim = 'lat', how='all')
if len(DS_y.coords) >3 :
DS_y=DS_y.drop('spatial_ref')
#%% load data - climate CRU
# DS_t_mean=xr.open_dataset("cru/cru_tmp.nc",decode_times=True).sel(time=slice('1980-01-01','2012-12-31'))
DS_t_max=xr.open_dataset("cru_ts4.04.1901.2019.tmx.dat.nc",decode_times=True).sel(time=slice(start_date, end_date))
DS_t_mn=xr.open_dataset("cru_ts4.04.1901.2019.tmn.dat.nc",decode_times=True).sel(time=slice(start_date, end_date))
DS_dtr=xr.open_dataset("cru_ts4.04.1901.2019.dtr.dat.nc",decode_times=True).sel(time=slice(start_date, end_date))
# DS_frs=xr.open_dataset("cru_ts4.04.1901.2019.frs.dat.nc",decode_times=True).sel(time=slice(start_date, end_date))
# DS_cld=xr.open_dataset("cru_ts4.04.1901.2019.cld.dat.nc",decode_times=True).sel(time=slice(start_date, end_date))
# DS_prec=xr.open_dataset("cru/cru_pre.nc",decode_times=True).sel(time=slice(start_date, end_date))
# DS_vap=xr.open_dataset("cru/cru_vap.nc",decode_times=True).sel(time=slice(start_date, end_date))
# DS_wet=xr.open_dataset("cru/cru_wet.nc",decode_times=True).sel(time=slice(start_date, end_date))
DS_spei = xr.open_dataset("spei01.nc",decode_times=True).sel(time=slice(start_date, end_date))
DS_spei2 = xr.open_dataset("spei02.nc",decode_times=True).sel(time=slice(start_date, end_date))
DS_spei2 = DS_spei2.rename_vars({'spei': 'spei2_'})
# DS_rad = xr.open_dataset("surface_radiation_1980_2012_grid.nc",decode_times=True).sel(time=slice(start_date, end_date))
# DS_rad.coords['time'] = DS_spei.coords['time']
# Merge and mask - when using wet or frost days, add dt.days after DS['days'] ;;;;;;; DS_frs['frs'].dt.days,
DS_cli = xr.merge([DS_t_max.tmx,DS_dtr.dtr, DS_spei2.spei2_])
#alternative
DS_cli_us = DS_cli.where(DS_y['yield'].mean('time') > -0.1 )
if len(DS_cli_us.coords) >3 :
DS_cli_us=DS_cli_us.drop('spatial_ref')
for feature in list(DS_cli_us.keys()):
print(feature)
mean_cli = DS_cli_us[feature].to_dataframe().groupby(['time']).mean()
mean_cli=mean_cli.loc[mean_cli.index.year != 2012]
mean_cli_y = mean_cli.groupby(mean_cli.index.month).mean()
stdev_cli = mean_cli.groupby(mean_cli.index.month).std()
#2012
mean_cli_2012 = DS_cli_us[feature].sel(time='2012').to_dataframe().groupby(['time']).mean()
mean_cli_2012.index = mean_cli_y.index
# plot
plt.plot(mean_cli_y, label=f"Mean {feature}")
plt.fill_between(x=stdev_cli.index, y1=(mean_cli_y-stdev_cli).values.ravel(), y2=(mean_cli_y+stdev_cli).values.ravel() ,alpha=0.3, facecolor='navy', label = f"standard deviation of {feature}")
plt.plot(mean_cli_2012, label = f"2012 {feature}")
plt.legend()
plt.title('Climatology against 2012')
plt.show()
#%% clustering
from sklearn.cluster import AgglomerativeClustering
#crop data
da_yield_cropped = DS_y['yield'].dropna(dim = 'lon', how='all')
da_yield_cropped = da_yield_cropped.dropna(dim = 'lat', how='all')
da_yield_cropped = da_yield_cropped.fillna(1000)
#cluster it for 10 categoris + nan (1000)
hor_data = da_yield_cropped.stack(z=("lat", "lon"))
clustering = AgglomerativeClustering(linkage='average', n_clusters = 11).fit(hor_data.T)
hor_dataset = hor_data.to_dataset()
# update the values for lat/lon
hor_dataset['cluster_label'] = (('z'), clustering.labels_)
cluster_yield = hor_dataset['cluster_label'].unstack()
cluster_yield = cluster_yield.where( cluster_yield != hor_dataset['cluster_label'][-1].values)
unique_values = np.unique(cluster_yield)
unique_values = unique_values[~np.isnan(unique_values)]
cluster_names = ['Cluster '+str(i) for i in range(len(unique_values))]
plt.figure(figsize=(20,10)) #plot clusters
ax=plt.axes(projection=ccrs.Mercator())
cluster_yield.plot(x='lon', y='lat',transform=ccrs.PlateCarree(), robust=False, cmap = cm.get_cmap('tab20', len(unique_values)))
ax.add_geometries(us1_shapes, ccrs.PlateCarree(),edgecolor='black', facecolor=(0,1,0,0.0))
ax.set_extent([-125,-67,24,50], ccrs.PlateCarree())
plt.show()
# detrend feature
def detrend_feature_iso(dataarray_reference, dataarray_in, reference_value, NA_value, months_selected):
range_piecewise = list(range(20, int(dataarray_in.time.dt.year[-1].values - dataarray_in.time.dt.year[0].values), 20))
dataarray_iso = dataarray_in.where(dataarray_reference > reference_value, NA_value)
mean_cli = dataarray_iso.mean(axis=0)
dataarray_iso_1 = xr.DataArray(signal.detrend(dataarray_iso, axis=0, bp=range_piecewise ), dims=dataarray_iso.dims, coords=dataarray_iso.coords, attrs=dataarray_in.attrs, name = dataarray_in.name ) + mean_cli
dataarray_iso_2 = dataarray_iso_1.where(dataarray_iso_1 > -100, np.nan ).sel(time = DS_cli_us.indexes['time'].month.isin(months_selected))
return dataarray_iso_2
#convert to dataframe, reshape so every month is in a separate colum:
def reshape_data(dataarray): #converts and reshape data
dataframe = dataarray.to_dataframe().dropna(how='all')
dataframe['month'] = dataframe.index.get_level_values('time').month
dataframe['year'] = dataframe.index.get_level_values('time').year
dataframe.set_index('month', append=True, inplace=True)
dataframe.set_index('year', append=True, inplace=True)
dataframe = dataframe.reorder_levels(['time', 'year','month', 'lat', 'lon'])
dataframe.index = dataframe.index.droplevel('time')
dataframe = dataframe.unstack('month')
dataframe.columns = dataframe.columns.droplevel()
return dataframe
# Features considered for this case
months_to_be_used = [6,7,8,9] # range(1,11)
list_feature_names = list(DS_cli_us.keys())
column_names=[]
for i in list_feature_names:
for j in months_to_be_used:
column_names.append(i+str(j))
# calculating for each cluster the training matrix features + target:
all_clusters_partitioned = np.zeros((len(unique_values)), dtype=object)
for cluster in range(len(unique_values)): #for each cluster, define yield and climate features b*X=y
# yield - target(y)
DS_y_c = DS_y['yield'].where(cluster_yield == unique_values[cluster])
range_piecewise = list(range(20, int(DS_y_c.time[-1].values - DS_y_c.time[0].values), 20))
dataarray_iso = DS_y_c.where(DS_y_c > -2, -400)
mean_cli = dataarray_iso.mean(axis=0)
dataarray_iso_1 = xr.DataArray(signal.detrend(dataarray_iso, axis=0, bp=range_piecewise), dims=dataarray_iso.dims, coords=dataarray_iso.coords, attrs=DS_y['yield'].attrs, name = DS_y['yield'].name ) + mean_cli
dataarray_iso_2 = dataarray_iso_1.where(dataarray_iso_1 > -100, np.nan )
df_y_c_det = dataarray_iso_2.to_dataframe().dropna(how='all')
# df_y_c_det.groupby('time').mean().plot()
# climate features(X)
df_features_list = []
for feature in list_feature_names:
DS_cluster_feature = DS_cli_us[feature].where(cluster_yield == unique_values[cluster])
da_det = detrend_feature_iso((DS_cli_us.tmx.where(cluster_yield == unique_values[cluster])), DS_cluster_feature,-300, -30000,months_to_be_used)
df_cluster_feature = reshape_data(da_det)
df_features_list.append(df_cluster_feature)
df_clim_features = pd.concat(df_features_list, axis=1)
df_clim_features.columns = column_names
# aggregate it all
all_clusters_partitioned[cluster] = pd.concat([df_clim_features,df_y_c_det], axis=1, sort=False) # final table with all features + yield
#%% test one cluster (this case it is number 3 - Illinois) for experiments
df_cli2 = all_clusters_partitioned[0].iloc[:,:-1]
#remove wet and precipitation because of multicolinearity with SPEI
# df_cli2 = pd.concat([df_cli2.iloc[:,0:15],df_cli2.iloc[:,15:25]], axis=1, sort=False)
# if 'spei2_7' in df_cli2:
# df_cli2 = df_cli2.drop(columns=['spei2_7'])
if 'spei2_9' in df_cli2:
df_cli2 = df_cli2.drop(columns=['spei2_9'])
# if 'dtr7' in df_cli2:
# df_cli2 = df_cli2.drop(columns=['dtr7'])
# if 'dtr9' in df_cli2:
# df_cli2 = df_cli2.drop(columns=['dtr9'])
df_y_f = pd.DataFrame(all_clusters_partitioned[0].loc[:,'yield'])
df_total = pd.concat([df_cli2,df_y_f], axis=1, sort=False)
#%% # Run analysis one cluster
lr_f1, lr_f2, lr_auc, feature_list, brf_model = failure_probability(df_cli2, df_y_f, show_scatter = False, show_partial_plots= True)
#%% The whole area together, no cluster
df_features_list = []
for feature in list_feature_names:
DS_cluster_feature = DS_cli_us[feature]
da_det = detrend_feature_iso((DS_cli_us.tmx), DS_cluster_feature,-300, -30000, months_to_be_used)
df_cluster_feature = reshape_data(da_det)
df_features_list.append(df_cluster_feature)
df_clim_features = pd.concat(df_features_list, axis=1)
df_clim_features.columns = column_names
DS_y['yield'].to_dataframe().groupby(['time']).mean().plot()
dataarray_iso = DS_y['yield'].where(DS_y['yield'] > -2, -400)
mean_cli = dataarray_iso.mean(axis=0)
dataarray_iso_1 = xr.DataArray(signal.detrend(dataarray_iso, axis=0, bp=range_piecewise), dims=dataarray_iso.dims, coords=dataarray_iso.coords, attrs=DS_y['yield'].attrs, name = DS_y['yield'].name ) + mean_cli
dataarray_iso_2 = dataarray_iso_1.where(dataarray_iso_1 > -100, np.nan )
df_y_total_det = dataarray_iso_2.to_dataframe().dropna(how='all')
df_y_total_det.groupby(['time']).mean().plot()
df_cli_total = df_clim_features
# df_cli_total = pd.concat([df_cli_total.iloc[:,5:15],df_cli_total.iloc[:,15:25]], axis=1, sort=False)
if 'spei2_7' in df_cli_total:
df_cli_total = df_cli_total.drop(columns=['spei2_7'])
if 'spei2_9' in df_cli_total:
df_cli_total = df_cli_total.drop(columns=['spei2_9'])
# if 'dtr7' in df_cli_total:
# df_cli_total = df_cli_total.drop(columns=['dtr7','dtr9'])
df_total_total = pd.concat([df_cli_total,df_y_total_det], axis=1, sort=False)
df_severe_test = pd.DataFrame( np.where(df_y_total_det < df_y_total_det.mean()-df_y_total_det.std(),True, False), index = df_y_total_det.index,columns = ['severe_loss'] ).astype(int)
df_clim_avg_features_fail = df_cli_total.loc[df_severe_test['severe_loss'] == 1]
df_clim_avg_features_no_fail = df_cli_total.loc[df_severe_test['severe_loss'] == 0]
fig, axes = plt.subplots(2,int(np.ceil(len(df_clim_avg_features_fail.columns)/2)), figsize=(10, 10), dpi=150)
for i, ax in enumerate(axes.flatten()):
mean_cli_no_fail = df_clim_avg_features_no_fail.iloc[:,i]
sns.violinplot(y = mean_cli_no_fail.values , color="darkblue",ax=ax)
#failures
mean_cli_fail = df_clim_avg_features_fail.iloc[:,i]
ax = sns.violinplot(y=mean_cli_fail.values, color="red",ax=ax)
plt.setp(ax.collections, alpha=.5)
ax.set_title(f"{df_clim_avg_features_fail.columns[i]}")
fig.suptitle('Comparison failure (red) and no failure (blue)', fontsize=20)
fig.tight_layout()
plt.show()
### PLOTS
# plt.figure(figsize=(20,10)) #plot clusters
# ax=plt.axes(projection=ccrs.Mercator())
# DS_cli_us.tmx.mean('time').plot(x='lon', y='lat',transform=ccrs.PlateCarree(), robust=True,cbar_kwargs={'label': 'Yield kg/ha'}, cmap='tab20')
# ax.add_geometries(us1_shapes, ccrs.PlateCarree(),edgecolor='black', facecolor=(0,1,0,0.0))
# ax.set_extent([-125,-67,24,50], ccrs.PlateCarree())
# plt.show()
# plt.figure(figsize=(20,10)) #plot clusters
# ax=plt.axes(projection=ccrs.Mercator())
# DS_y['yield'].mean('time').plot(x='lon', y='lat',transform=ccrs.PlateCarree(), robust=True,cbar_kwargs={'label': 'Yield kg/ha'}, cmap='tab20')
# ax.add_geometries(us1_shapes, ccrs.PlateCarree(),edgecolor='black', facecolor=(0,1,0,0.0))
# ax.set_extent([-125,-67,24,50], ccrs.PlateCarree())
# plt.show()
#%%
#alternative summing either 7,8 for all variables, or keeping only spei2_8 as it is
df_cli_total_alt = df_cli_total.iloc[:,5:10]
df_cli_total_alt = pd.concat([df_cli_total.iloc[:,5:7].mean(axis=1),df_cli_total.iloc[:,8:9].mean(axis=1),df_cli_total.iloc[:,9:10].mean(axis=1)], axis=1)
df_cli_total_alt.columns=['tmx','dtr', 'spei']
# not good so far, change detrending scheme
lr_f1_total, lr_f2_total, lr_auc_total, feature_list_total, brf_total_model = failure_probability(df_cli_total_alt, df_y_total_det, show_scatter = False, show_partial_plots = True)
#%% Sparse 5 units
# sparse_lvl=1
# DS_y_s = DS_y['yield'][::,::sparse_lvl,::sparse_lvl]
# df_features_list = []
# for feature in list_feature_names:
# DS_cluster_feature = DS_cli_us[feature][::,::sparse_lvl,::sparse_lvl]
# da_det = detrend_feature_iso((DS_cli_us.tmx[::,::sparse_lvl,::sparse_lvl]), DS_cluster_feature,-300, -30000, months_to_be_used)
# df_cluster_feature = reshape_data(da_det)
# df_features_list.append(df_cluster_feature)
# df_clim_features = pd.concat(df_features_list, axis=1)
# df_clim_features.columns = column_names
# df_y_total = DS_y_s.to_dataframe().dropna(how='all')
# df_y_total_det = pd.DataFrame( signal.detrend(df_y_total, axis=0), index=df_y_total.index, columns = df_y_total.columns) + df_y_total.mean()
# df_cli_total = df_clim_features
# #remove wet and precipitation because of multicolinearity with SPEI
# # df_cli_total = pd.concat([df_cli_total.iloc[:,5:15],df_cli_total.iloc[:,15:25]], axis=1, sort=False)
# # if 'spei2_8' in df_cli_total:
# # df_cli_total = df_cli_total.drop(columns=['spei2_7','spei2_9'])
# df_total_total = pd.concat([df_cli_total,df_y_total_det], axis=1, sort=False)
# plt.figure(figsize=(20,10)) #plot clusters
# ax=plt.axes(projection=ccrs.Mercator())
# DS_cli_us.tmx[::,::sparse_lvl,::sparse_lvl].mean('time').plot(x='lon', y='lat',transform=ccrs.PlateCarree(), robust=True,cbar_kwargs={'label': 'Yield kg/ha'}, cmap='tab20')
# ax.add_geometries(us1_shapes, ccrs.PlateCarree(),edgecolor='black', facecolor=(0,1,0,0.0))
# ax.set_extent([-125,-67,24,50], ccrs.PlateCarree())
# plt.show()
# plt.figure(figsize=(20,10)) #plot clusters
# ax=plt.axes(projection=ccrs.Mercator())
# DS_y['yield'][::,::sparse_lvl,::sparse_lvl].mean('time').plot(x='lon', y='lat',transform=ccrs.PlateCarree(), robust=True,cbar_kwargs={'label': 'Yield kg/ha'}, cmap='tab20')
# ax.add_geometries(us1_shapes, ccrs.PlateCarree(),edgecolor='black', facecolor=(0,1,0,0.0))
# ax.set_extent([-125,-67,24,50], ccrs.PlateCarree())
# plt.show()
# lr_f1_total, lr_f2_total, lr_auc_total, feature_list_total, brf_model = failure_probability(df_cli_total, df_y_total_det, show_scatter = False, show_partial_plots = True)
#%% multiple clusters
f1_list = []
f2_list = []
pr_auc_list = []
features_per_cluster = []
for i in range(len(all_clusters_partitioned)):
print("\n Cluster:", i , "\n _____________________________")
# import from clusters
df_cli2 = all_clusters_partitioned[i].iloc[:,:-1]
# df_cli2 = pd.concat([df_cli2.iloc[:,5:15],df_cli2.iloc[:,15:25]], axis=1, sort=False) #remove wet and precipitation because of multicolinearity with SPEI
df_y_f = pd.DataFrame(all_clusters_partitioned[i].loc[:,'yield'])
df_total = pd.concat([df_cli2,df_y_f], axis=1, sort=False)
# df_cli2_alt = pd.concat([df_cli2.iloc[:,0:2].mean(axis=1),df_cli2.iloc[:,2:4].mean(axis=1),df_cli2.iloc[:,4:6].mean(axis=1)], axis=1)
# df_cli2_alt.columns=['tmx','dtr', 'spei']
lr_f1, lr_f2, lr_auc, feature_list, brf_model = failure_probability(df_cli2, df_y_f, show_scatter = False)
f1_list.append(lr_f1)
f2_list.append(lr_f2)
pr_auc_list.append(lr_auc)
features_per_cluster.append(feature_list)
print("______________________________")
print("##############################")
print("______________________________")
#%% tables
sc_all_array = np.repeat(lr_f2_total, len(f2_list))
table_score = np.array([ np.array(f2_list),sc_all_array, (np.array(f2_list) - np.array(sc_all_array))]).T
df_table = pd.DataFrame(table_score, index =unique_values, columns=(['Optimization - Local','Overall baseline', 'Difference local - baseline']) )
pd.set_option("display.max_columns", 6)
print(df_table)
features_table = pd.DataFrame(features_per_cluster, index = unique_values)
print(features_table)
plt.figure(figsize=(10,6), dpi=144)
plt.title('R2 Score at a state level')
plt.bar(x=df_table.index, height =df_table['Optimization - Local'], label='Cluster optimization')
# plt.scatter(x=df_table.index, y='Optimization - Mean', data=df_table, label='Local - Features from mean model')
plt.hlines(y=df_table['Overall baseline'], xmin=df_table.index[0], xmax=df_table.index[-1], label='Overall model', color = 'orange')
plt.ylim(0, 1.1)
plt.xlabel("Cluster index")
plt.ylabel("F2 score")
plt.legend(loc='lower right')
plt.savefig('clusters_performance.png', bbox_inches='tight')
plt.show()
features_cluster_total = features_per_cluster #+ feature_list_total
features_cluster_total.append(feature_list_total) #+
from collections import defaultdict
flat_list = [item for sublist in features_cluster_total for item in sublist]
d = defaultdict(list)
for k, v in flat_list:
d[k].append(v)
d = {k: v for k, v in sorted(d.items(), key=lambda item: np.mean(item[1]))}
import seaborn as sns
sorted_keys, sorted_vals = [*zip(*d.items())]
sns.boxplot(data=sorted_vals, width=.4, showmeans=True).set(title = "Most important features", ylabel = 'Importance', xlabel = 'Features')
sns.swarmplot(data=sorted_vals, size=6, edgecolor="black", linewidth=.9)
# category labels
plt.xticks(plt.xticks()[0], sorted_keys)
plt.savefig('features_importance.png', bbox_inches='tight')
plt.show()
#%% TESST - CC
from sklearn.model_selection import train_test_split
import seaborn as sns
df_y_f = df_y_f
df_severe =pd.DataFrame( np.where(df_y_f < df_y_f.mean() - df_y_f.std(),True, False), index = df_y_f.index, columns = ['severe_loss'] ).astype(int)
#divide data train and test
X_train, X_test, y_train, y_test = train_test_split(df_cli2, df_severe, test_size=0.3, random_state=0)
#predictions
y_pred = brf_model.predict(X_test)
n_fail_hist=(sum(y_pred))
ratio_fail_hist=(sum(y_pred)/len(y_pred))
X_test_proj = X_test.copy()
# #generate scenarios and plots
# list_failure=[]
# list_ratio=[]
# range_temp = range(1,6)
# for increase_proj in range_temp:
# X_test_proj.loc[:,'tmx9'] = X_test.loc[:,'tmx9'].copy() + increase_proj
# # X_test_proj.loc[:,'tmx7'] = X_test.loc[:,'tmx7'].copy() + increase_proj
# # X_test_proj.loc[:,'tmx9'] = X_test.loc[:,'tmx9'].copy() + increase_proj
# y_proj_pred = brf_model.predict(X_test_proj)
# n_fail_proj=(sum(y_proj_pred))
# increase_failure=(sum(y_proj_pred)/len(y_proj_pred))
# list_ratio.append(increase_failure)
# list_failure.append( (n_fail_proj-n_fail_hist)/n_fail_hist )
# plt.figure(figsize=(10,6), dpi=100)
# plt.scatter(range_temp, list_failure, c='black')
# plt.title(f"Failure events wrt history", fontsize=20)
# plt.xlabel("Celisus degrees", fontsize=16)
# plt.ylabel("Predicted failure increase", fontsize=16)
# plt.figure(figsize=(10,6), dpi=100)
# plt.scatter(range_temp, list_ratio, c='black')
# plt.title(f"Ratio of failure events by temperature increase", fontsize=20)
# plt.xlabel("Celisus degrees", fontsize=16)
# plt.ylabel("Ratio of failure per total events", fontsize=16)
# plt.axhline(np.mean(ratio_fail_hist))
perturbation_range = range(-2,4)
features_proj = X_test_proj.columns[0:8]
failure_ratio = np.zeros((len(perturbation_range), len(features_proj) ), dtype=object)
increase_failure = np.zeros((len(perturbation_range), len(features_proj) ), dtype=object)
for feature in range(len(features_proj)):
for perturbation in range(len(perturbation_range)):
X_test_proj = X_test.copy()
X_test_proj.loc[:,X_test_proj.columns[feature]] = X_test.loc[:,X_test.columns[feature]].copy() + perturbation_range[perturbation]
y_proj_pred = brf_model.predict(X_test_proj)
n_fail_proj=(sum(y_proj_pred))
increase_failure[perturbation,feature] = (n_fail_proj-n_fail_hist)/n_fail_hist
failure_ratio[perturbation,feature] = (sum(y_proj_pred)/len(y_proj_pred))
df_ratio = pd.DataFrame(failure_ratio, columns=features_proj, index = perturbation_range )
df_increase = pd.DataFrame(increase_failure, columns=features_proj, index = perturbation_range )
# df_ratio.plot() # df_increase.plot()
df_melt = df_increase.reset_index().melt('index', var_name='Features', value_name='Predicted failure increase')
df_melt['Predicted failure increase'] = df_melt['Predicted failure increase'].astype(float)
plt.figure(figsize = (8,8), dpi=144)
g = sns.lineplot(x="index", y="Predicted failure increase", hue='Features', data=df_melt,style="Features", markers=True, dashes = False)
g.set(xlabel='Celsius degree [SPEI] increase')
plt.show()
df_melt2 = df_ratio.reset_index().melt('index', var_name='Features', value_name='Ratio of failure per total events')
df_melt2['Ratio of failure per total events'] = df_melt2['Ratio of failure per total events'].astype(float)
plt.figure(figsize = (8,8), dpi=144)
f = sns.lineplot(x="index", y="Ratio of failure per total events", hue='Features', data=df_melt2, style="Features", markers=True, dashes = False)
plt.axhline(np.mean(ratio_fail_hist), color = 'black')
f.set(xlabel='Celsius degree [SPEI] increase')
plt.show()