Skip to content

Latest commit

 

History

History
43 lines (34 loc) · 2.02 KB

readme.md

File metadata and controls

43 lines (34 loc) · 2.02 KB

DOI

Pytorch implementation of the paper:

Artistic Photo Filter Removal Using CNNs
Journal of Electronic Imaging, SPIE
F. Piccoli, C. Cusano, S. Bianco, R. Schettini

Usage:

# clone this repository
git clone --recursive https://github.com/dros1986/filter_removal.git
# download the dataset
wget https://drive.google.com/a/campus.unimib.it/uc?export=download&confirm=XAOn&id=1vvLAO__opCjgLfRjAjW3WPWJHNiiVLbs
# unzip the file
unzip file.zip -d ./datasets/
# start training
python main.py -degin 3 degout 3
# start test
python main.py -degin 3 degout 3 --regen ./checkpoint.pth

Input images input

Output images output

Parameters

Name Description Default
degin Degree of the polynomial onto which the color transform will be estimated 3
degout Degree of the polynomial onto which the color transform will be applied 3
patchsize patchsize*patchsize is the number of pixels involved in each color transform 8
nrow Batch size will be nrow*nrow 5
indir Folder containing filtered images ./datasets/places-instagram/images/
gtdir Folder containing original images ./datasets/places-instagram/images_orig/
train_list txt containing train set filenames ./datasets/places-instagram/train-list.txt
validation_list txt containing validation set filenames ./datasets/places-instagram/smallvalidation-list.txt
test_list txt containing test set filenames ./datasets/places-instagram/test-list.txt