-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
264 lines (217 loc) · 9.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import math
import os
import socket
import hydra
import numpy as np
import torch
import torch.nn as nn
import torch.optim.lr_scheduler as lr_scheduler
import wandb
from omegaconf import DictConfig, OmegaConf
from rich import pretty, print
from tqdm import tqdm
from checkpointer import load_checkpoint, save_checkpoint
from criterion import FocalLossWithLogits, SignLoss
from dataloader import build_dataloader
from utils import Metric, mean_ap, build_model
from evaluate import test_rec as run_test
def wandb_init(cfg: DictConfig):
wandb.init(
project='defr',
group=cfg.exp_group,
name=cfg.exp_name,
notes=cfg.exp_desc,
save_code=True,
config=OmegaConf.to_container(cfg, resolve=True)
)
OmegaConf.save(config=cfg, f=os.path.join(wandb.run.dir, 'conf.yaml'))
def build_criterion(cfg, train_loader):
if cfg.loss.name == 'WBCE':
pos_weights = train_loader.dataset.get_pos_weights()
criterion = nn.BCEWithLogitsLoss(pos_weight=torch.tensor(pos_weights).cuda())
elif cfg.loss.name == 'BCE':
criterion = nn.BCEWithLogitsLoss()
elif cfg.loss.name == 'Focal':
criterion = FocalLossWithLogits(alpha=cfg.loss.alpha, gamma=cfg.loss.gamma)
elif cfg.loss.name == 'Sign' or cfg.loss.name == 'SignLoss':
criterion = SignLoss()
else:
raise ValueError
return criterion
def build_optimizer(cfg, model):
if cfg.optim.slow_lr_backbone:
raise NotImplemented()
# if cfg.model.backbone == 'ImageNet1k-ViT-B':
# params = []
# for k, v in model.module.named_parameters():
# if k.startswith('vit.'):
# params.append({'params': v, 'lr': cfg.optim.base_lr / 10})
# else:
# params.append({'params': v, 'lr': cfg.optim.base_lr})
# optimizer = torch.optim.AdamW(params, lr=cfg.optim.base_lr, weight_decay=cfg.optim.weight_decay)
# elif cfg.model.backbone == 'CLIP-ViT-B':
# params = []
# for k, v in model.module.named_parameters():
# if k.startswith('visual_encoder.'):
# params.append({'params': v, 'lr': cfg.optim.base_lr / 10})
# else:
# params.append({'params': v, 'lr': cfg.optim.base_lr})
# optimizer = torch.optim.AdamW(params, lr=cfg.optim.base_lr, weight_decay=cfg.optim.weight_decay)
# else:
# raise NotImplemented()
else:
# params = []
# no_weight_decay = model.module.no_weight_decay()
# for k, v in model.module.named_parameters():
# if k in no_weight_decay or 'bias' in k:
# params.append({'params': v, 'weight_decay': 0})
# else:
# params.append({'params': v})
optimizer = torch.optim.AdamW(model.parameters(), lr=cfg.optim.base_lr, weight_decay=cfg.optim.weight_decay)
return optimizer
class CosineAnnealingWarmupScheduler(lr_scheduler.LambdaLR):
def __init__(self, optimizer, warmup_steps, t_total, cycles=.5, last_epoch=-1):
self.warmup_steps = warmup_steps
self.t_total = t_total
self.cycles = cycles
super(CosineAnnealingWarmupScheduler, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch)
def lr_lambda(self, step):
if step < self.warmup_steps:
return float(step) / float(max(1.0, self.warmup_steps))
progress = float(step - self.warmup_steps) / float(max(1, self.t_total - self.warmup_steps))
return max(0.0, 0.5 * (1. + math.cos(math.pi * float(self.cycles) * 2.0 * progress)))
def build_scheduler(cfg, optimizer):
if cfg.scheduler.name == 'MultiStepLR':
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=cfg.scheduler.milestones, gamma=cfg.scheduler.gamma, verbose=False)
elif cfg.scheduler.name == 'ReduceLROnPlateau':
scheduler = lr_scheduler.ReduceLROnPlateau(
optimizer,
mode='max',
factor=cfg.scheduler.gamma,
patience=cfg.scheduler.patience,
threshold=cfg.scheduler.threshold,
threshold_mode='abs',
verbose=False
)
elif cfg.scheduler.name == 'CosineAnnealingWarmRestarts':
scheduler = lr_scheduler.CosineAnnealingWarmRestarts(
optimizer,
T_0=cfg.scheduler.T_0,
T_mult=cfg.scheduler.T_mult
)
elif cfg.scheduler.name == 'CosineAnnealingLR':
scheduler = lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=cfg.data.n_iters * cfg.epochs
)
elif cfg.scheduler.name == 'CosineAnnealingWarmup':
scheduler = CosineAnnealingWarmupScheduler(
optimizer,
cfg.data.n_iters * cfg.scheduler.warmup_t,
cfg.data.n_iters * cfg.epochs
)
else:
raise NotImplemented()
return scheduler
def train(cfg):
wandb_init(cfg)
n_gpu = torch.cuda.device_count()
print('CUDA Devices:', n_gpu)
device = torch.device("cuda")
model = build_model(cfg).to(device)
if n_gpu > 1:
cfg.data.batch_size *= n_gpu
model = torch.nn.DataParallel(model)
train_loader = build_dataloader(cfg, 'train' if cfg.data.validation else 'train_all')
cfg.data.n_iters = len(train_loader)
criterion = build_criterion(cfg, train_loader)
optimizer = build_optimizer(cfg, model)
scheduler = build_scheduler(cfg, optimizer)
for epoch in range(cfg.epochs):
metric = Metric()
model.train()
wandb.log({'lr': optimizer.param_groups[0]['lr']}, epoch)
for it, batch in enumerate(train_loader):
optimizer.zero_grad()
imgs, targets_onehot, known_obj, certain, idx = batch
imgs = imgs.to(device)
logits = model(imgs)
loss = criterion(logits, targets_onehot.to(device))
loss = loss.mean()
loss.backward()
metric.add_val(loss.detach().item())
optimizer.step()
if cfg.scheduler.name in ['CosineAnnealingWarmRestarts']:
scheduler.step(epoch + it / cfg.data.n_iters)
if cfg.scheduler.name in ['CosineAnnealingLR', 'CosineAnnealingWarmup']:
scheduler.step()
if it % cfg.print_freq == 0:
print('Epoch: %3d/%3d, iter: %4d/%4d, loss: %.3f (%.3f)' % (epoch, cfg.epochs, it, len(train_loader), metric.val, metric.mean))
wandb.log(step=epoch, data={'loss': metric.mean})
if (epoch + 1) % cfg.val_freq == 0 or epoch + 1 == cfg.epochs:
print('run evaluation...')
#mAPv = run_test(cfg, model, 'val', epoch)
mAPt = run_test(cfg, model, 'test', epoch)
if cfg.scheduler.name == 'MultiStepLR':
scheduler.step()
if cfg.scheduler.name == 'ReduceLROnPlateau':
scheduler.step(mAPt)
if epoch % cfg.save_freq == 0:
save_checkpoint(epoch, (model.module if n_gpu > 1 else model), optimizer, cfg.paths.ckpt_out_dir)
def run_test(cfg, model=None, split='test', epoch=0):
if model == None:
print('using initial weights')
model = build_model(cfg).to('cuda')
model = torch.nn.DataParallel(model)
dataloader = build_dataloader(cfg, split)
ncls = 600 if cfg.data.dataset == 'hico' else 393
S = np.zeros([0, ncls])
labels = np.zeros([0, ncls])
known_objs = np.zeros([0, ncls]).astype(bool)
certains = np.zeros([0, ncls]).astype(bool)
with torch.no_grad():
model.eval()
for batch in tqdm(dataloader):
imgs, targets_onehot, known_obj, certain, idx = batch
s = model(imgs.cuda())
s = s.detach().cpu().numpy()
known_obj = known_obj.numpy()
certain = certain.numpy()
S = np.vstack((S, s))
labels = np.vstack((labels, targets_onehot.cpu().numpy()))
known_objs = np.vstack((known_objs, known_obj))
certains = np.vstack((certains, certain))
if cfg.eval.save_result and split == 'test':
label_out_fp = os.path.join(cfg.paths.log_dir, 'labels')
if not os.path.isfile(label_out_fp):
np.save(label_out_fp, labels)
np.save(os.path.join(cfg.paths.log_dir, 'certains'), certains)
np.save(os.path.join(cfg.paths.log_dir, '%s_out_ep%04d' % (split, epoch)), S)
mAP = mean_ap(S, labels, certains)
print('>> %s set, \tDefault \tmAP: %.3f' % (split, 100*mAP))
wandb.log(step=epoch, data={
'mAP-%s' % split: mAP
})
if cfg.eval.eval_known_obj:
ko_certain = np.logical_and(known_objs, certains)
mAP3 = mean_ap(S, labels, ko_certain)
print(' \tKO: \tmAP: %.3f' % (100*mAP3))
wandb.log(step=epoch, data={
'mAP-%s-ko' % split: mAP3,
})
return mAP
@hydra.main(config_path='configs', config_name='defaults')
def main(cfg):
pretty.install()
OmegaConf.resolve(cfg)
print(OmegaConf.to_yaml(cfg))
os.environ['NCCL_DEBUG'] = 'VERSION'
if not cfg.wandb:
os.environ['WANDB_MODE'] = 'dryrun'
wandb.login(key='use your own please!')
os.makedirs(cfg.paths.ckpt_out_dir, exist_ok=True)
os.makedirs(cfg.paths.log_dir, exist_ok=True)
train(cfg)
wandb.finish()
if __name__ == '__main__':
main()