diff --git a/docs/404.html b/docs/404.html index 2ed265c..d2373ed 100644 --- a/docs/404.html +++ b/docs/404.html @@ -52,7 +52,7 @@
diff --git a/docs/articles/Causal_Effects.html b/docs/articles/Causal_Effects.html index e06765f..8aef5e6 100644 --- a/docs/articles/Causal_Effects.html +++ b/docs/articles/Causal_Effects.html @@ -53,7 +53,7 @@ @@ -135,7 +135,7 @@vignettes/Causal_Effects.Rmd
Causal_Effects.Rmd
vignettes/Competing_Risks.Rmd
Competing_Risks.Rmd
vignettes/Dynamic_Predictions.Rmd
Dynamic_Predictions.Rmd
In the first line we define the event indicator as we did in the
The output of the The ordering of the subjects in the datasets used to fit the
+mixed and Cox regression models needs to be the same. The units of the time variables in the mixed and Cox models need
+to be the same. The spline coefficients do not have a straightforward interpretation.
We, therefore, visualize the time-varying association of log serum
bilirubin with the hazard of the composite event using the following
diff --git a/docs/articles/Transformation_Functions.html b/docs/articles/Transformation_Functions.html
index 156ebaf..b5e45e7 100644
--- a/docs/articles/Transformation_Functions.html
+++ b/docs/articles/Transformation_Functions.html
@@ -53,7 +53,7 @@
Rizopoulos D, Papageorgiou G, Miranda Afonso P (2024).
JMbayes2: Extended Joint Models for Longitudinal and Time-to-Event Data.
-R package version 0.5-0, https://github.com/drizopoulos/JMbayes2, https://drizopoulos.github.io/JMbayes2/.
+R package version 0.5-1, https://github.com/drizopoulos/JMbayes2, https://drizopoulos.github.io/JMbayes2/.
This package fits joint models for longitudinal and time-to-event data. It can accommodate multiple longitudinal outcomes of different type (e.g., continuous, dichotomous, ordinal, counts), and assuming different distributions, i.e., Gaussian, Student's-t, Gamma, Beta, unit Lindley, censored Normal, Binomial, Poisson, Negative Binomial, and Beta-Binomial. For the event time process, right, left and interval censored data can be handled, while competing risks and multi-sate processes are also covered. This package fits joint models for longitudinal and time-to-event data. It can accommodate multiple longitudinal outcomes of different type (e.g., continuous, dichotomous, ordinal, counts), and assuming different distributions, i.e., Gaussian, Student's-t, Gamma, Beta, unit Lindley, censored Normal, Binomial, Poisson, Negative Binomial, and Beta-Binomial. For the event time process, right, left and interval censored data can be handled, while competing risks and multi-sate processes are also covered. JMbayes2 fits joint models using Markov chain Monte Carlo algorithms implemented in C++. The package also offers several utility functions that can extract useful information from
fitted joint models. The most important of those are included in the
See also Section below. The mathematical details regarding the definition of the multivariate joint model, and the capabilities of the package can be found in the vignette in the doc directory. Notes: The ordering of the subjects in the datasets used to fit the mixed and Cox regression models needs to be the same. The units of the time variables in the mixed and Cox models need to be the same.pbc2.id
data.frame. The cut-point with the asterisk on the
right maximizes the Youden’s
@@ -428,7 +430,7 @@ Predictive accuracy#>
#> Time-dependent AUC for the Joint Model jointFit
#>
-#> Estimated AUC: 0.8282
+#> Estimated AUC: 0.8282 (95% CI: 0.752-0.826)
#> At time: 8
#> Using information up to time: 5 (202 subjects still at risk)
#> Accounting for censoring using model-based weights
@@ -497,7 +499,7 @@
Predictive accuracy#>
#> Prediction Error for the Joint Model 'jointFit'
#>
-#> Estimated Integrated Brier score: 0.0834
+#> Estimated Integrated Brier score: 0.0841
#> In the time interval: [5, 8)
#> For the 202 subjects at risk at time 5
#> Number of subjects with an event in [5, 8): 40
diff --git a/docs/articles/JMbayes2.html b/docs/articles/JMbayes2.html
index 0d6616b..a6c5052 100644
--- a/docs/articles/JMbayes2.html
+++ b/docs/articles/JMbayes2.html
@@ -53,7 +53,7 @@
@@ -135,7 +135,7 @@
Univariate and Multivariate Joint Models
Dimitris
Rizopoulos
- 2024-05-30
+ 2024-06-21
Source: vignettes/JMbayes2.Rmd
JMbayes2.Rmd
Univariate#> iterations per chain: 3500
#> burn-in per chain: 500
#> thinning: 1
-#> time: 16 sec
+#> time: 15 sec
summary()
method provides some
descriptive statistics of the sample at hand, followed by some fit
statistics based on the marginal (random effects are integrated out
@@ -244,6 +244,16 @@ Univariate
+ggdensityplot(jointFit1, "alphas")
Notes
+
+
+
+Multivariate
diff --git a/docs/articles/Multi_State_Processes.html b/docs/articles/Multi_State_Processes.html
index b5b6964..e7f5488 100644
--- a/docs/articles/Multi_State_Processes.html
+++ b/docs/articles/Multi_State_Processes.html
@@ -53,7 +53,7 @@
Multi-State Processes
Grigorios
Papageorgiou
- 2024-05-30
+ 2024-06-21
Source: vignettes/Multi_State_Processes.Rmd
Multi_State_Processes.Rmd
Non-Gaussian Mixed Models
Dimitris
Rizopoulos
- 2024-05-30
+ 2024-06-21
Source: vignettes/Non_Gaussian_Mixed_Models.Rmd
Non_Gaussian_Mixed_Models.Rmd
Negative binomial mixed models#> iterations per chain: 3500
#> burn-in per chain: 500
#> thinning: 1
-#> time: 25 sec
+#> time: 26 sec
@@ -876,7 +876,7 @@
Beta-binomial longitudinal outcomes
#> iterations per chain: 3500
#> burn-in per chain: 500
#> thinning: 1
-#> time: 49 sec
+#> time: 50 sec
diff --git a/docs/articles/Recurring_Events.html b/docs/articles/Recurring_Events.html
index dc6e4ab..b357ae8 100644
--- a/docs/articles/Recurring_Events.html
+++ b/docs/articles/Recurring_Events.html
@@ -53,7 +53,7 @@
@@ -135,7 +135,7 @@
Recurrent Events
Pedro Miranda
Afonso
- 2024-05-30
+ 2024-06-21
Source: vignettes/Recurring_Events.Rmd
Recurring_Events.Rmd
Combined Dynamic Predictions via Super
Dimitris
Rizopoulos
- 2024-05-30
+ 2024-06-21
Source: vignettes/Super_Learning.Rmd
Super_Learning.Rmd
Time Varying Effects
Dimitris
Rizopoulos
- 2024-05-30
+ 2024-06-21
Source: vignettes/Time_Varying_Effects.Rmd
Time_Varying_Effects.Rmd
Non Proportional Hazards#> iterations per chain: 6500
#> burn-in per chain: 2500
#> thinning: 1
-#> time: 36 sec
+#> time: 35 sec
Transformation Functions for Functional
Dimitris
Rizopoulos
- 2024-05-30
+ 2024-06-21
Source: vignettes/Transformation_Functions.Rmd
Transformation_Functions.Rmd
Citation
@Manual{,
title = {JMbayes2: Extended Joint Models for Longitudinal and Time-to-Event Data},
author = {Dimitris Rizopoulos and Grigorios Papageorgiou and Pedro {Miranda Afonso}},
year = {2024},
- note = {R package version 0.5-0, https://github.com/drizopoulos/JMbayes2},
+ note = {R package version 0.5-1, https://github.com/drizopoulos/JMbayes2},
url = {https://drizopoulos.github.io/JMbayes2/},
}
diff --git a/docs/index.html b/docs/index.html
index 89ff4b2..f1755ef 100644
--- a/docs/index.html
+++ b/docs/index.html
@@ -53,7 +53,7 @@
diff --git a/docs/news/index.html b/docs/news/index.html
index c558aba..fc924a0 100644
--- a/docs/news/index.html
+++ b/docs/news/index.html
@@ -23,7 +23,7 @@
diff --git a/docs/pkgdown.yml b/docs/pkgdown.yml
index 0029423..a214fdc 100644
--- a/docs/pkgdown.yml
+++ b/docs/pkgdown.yml
@@ -12,7 +12,7 @@ articles:
Super_Learning: Super_Learning.html
Time_Varying_Effects: Time_Varying_Effects.html
Transformation_Functions: Transformation_Functions.html
-last_built: 2024-05-30T15:41Z
+last_built: 2024-06-21T09:29Z
urls:
reference: https://drizopoulos.github.io/JMbayes2/reference
article: https://drizopoulos.github.io/JMbayes2/articles
diff --git a/docs/reference/JMbayes2.html b/docs/reference/JMbayes2.html
index b95abe0..abc00a2 100644
--- a/docs/reference/JMbayes2.html
+++ b/docs/reference/JMbayes2.html
@@ -23,7 +23,7 @@
@@ -104,7 +104,7 @@ Extended Joint Models for Longitudinal and Time-to-Event Data
Details
-Package: JMbayes2 Type: Package Version: 0.5-0 Date: 2024-05-30 License: GPL (>=3) Package: JMbayes2 Type: Package Version: 0.5-1 Date: 2024-06-05 License: GPL (>=3) Examples
#> Using information up to time: 4 (225 subjects still at risk)
#> Accounting for censoring using model-based weights
#>
-#> cut-off SN SP qSN qSP
-#> 1 0.01 0.01306 0.9978 0.008649 0.497080
-#> 2 0.03 0.02703 0.9958 0.018304 0.523635
-#> 3 0.05 0.04880 0.9958 0.035944 0.682423
-#> 4 0.06 0.06077 0.9933 0.043768 0.620426
-#> 5 0.07 0.06077 0.9877 0.039421 0.445027
-#> 6 0.08 0.08253 0.9877 0.057399 0.537523
-#> 7 0.09 0.10430 0.9877 0.075541 0.603591
-#> 8 0.10 0.12607 0.9877 0.093851 0.653142
-#> 9 0.13 0.14478 0.9813 0.105000 0.579203
-#> 10 0.17 0.15942 0.9795 0.116214 0.580071
-#> 11 0.18 0.18119 0.9795 0.135058 0.615065
-#> 12 0.19 0.18119 0.9739 0.130979 0.548016
-#> 13 0.20 0.23145 0.9700 0.172618 0.578512
-#> 14 0.21 0.28848 0.9679 0.222860 0.619934
-#> 15 0.22 0.30214 0.9658 0.234054 0.615519
-#> 16 0.23 0.32391 0.9602 0.250634 0.593356
-#> 17 0.25 0.34567 0.9602 0.271170 0.611036
-#> 18 0.26 0.36360 0.9481 0.280456 0.550739
-#> 19 0.30 0.36360 0.9425 0.276822 0.520839
-#> 20 0.32 0.38537 0.9425 0.298012 0.537952
-#> 21 0.34 0.40714 0.9425 0.319419 0.553885
-#> 22 0.36 0.42891 0.9369 0.337648 0.542132
-#> 23 0.37 0.45067 0.9369 0.359592 0.556440
-#> 24 0.41 0.49421 0.9369 0.404170 0.582532
-#> 25 0.45 0.50564 0.9287 0.411472 0.554243
-#> 26 0.46 0.50564 0.9231 0.408341 0.532330
-#> 27 0.47 0.51426 0.9141 0.412414 0.504642
-#> 28 0.51 0.52846 0.9066 0.423386 0.487496
-#> 29 0.54 0.53187 0.8963 0.421267 0.457469
-#> 30 0.55 0.55364 0.8851 0.438929 0.438218
-#> 31 0.56 0.56056 0.8813 0.444526 0.431937
-#> 32 0.57 0.60409 0.8758 0.490976 0.440889
-#> 33 0.58 0.64763 0.8758 0.541711 0.462393
-#> 34 0.60 0.66939 0.8758 0.567521 0.472537
-#> 35 0.61 0.66939 0.8702 0.564992 0.459035
-#> 36 0.62 0.66939 0.8590 0.559844 0.433478
-#> 37 0.63 0.69619 0.8547 0.590678 0.436355
-#> 38 0.65 0.71796 0.8547 0.617716 0.445908
-#> 39 0.66 0.71796 0.8491 0.615399 0.434201
-#> 40 0.68 0.71908 0.8382 0.612232 0.412965
-#> 41 0.69 0.74085 0.8382 0.640071 0.422283 *
-#> 42 0.70 0.74085 0.8327 0.637835 0.411676
-#> 43 0.71 0.74530 0.8282 0.641835 0.405351
-#> 44 0.72 0.74530 0.8226 0.639582 0.395322
-#> 45 0.73 0.74530 0.8059 0.632651 0.366979
-#> 46 0.74 0.76707 0.8059 0.661879 0.376022
-#> 47 0.75 0.77172 0.7847 0.659845 0.345452
-#> 48 0.76 0.77172 0.7791 0.657577 0.337425
-#> 49 0.77 0.77398 0.7630 0.654051 0.316253
-#> 50 0.78 0.77398 0.7574 0.651681 0.309002
-#> 51 0.79 0.77398 0.7462 0.646844 0.295038
-#> 52 0.80 0.79806 0.7412 0.680033 0.298498
-#> 53 0.81 0.82369 0.7255 0.712546 0.289984
-#> 54 0.82 0.83206 0.6997 0.715898 0.265531
-#> 55 0.83 0.85792 0.6784 0.750250 0.254007
-#> 56 0.84 0.85843 0.6618 0.745171 0.238983
-#> 57 0.85 0.86268 0.6349 0.742523 0.217722
-#> 58 0.86 0.86854 0.5918 0.735898 0.187136
-#> 59 0.87 0.87327 0.5762 0.738404 0.178018
-#> 60 0.88 0.87327 0.5483 0.725827 0.160060
-#> 61 0.89 0.87385 0.5373 0.721718 0.153555
-#> 62 0.90 0.88081 0.4609 0.695258 0.114580
-#> 63 0.91 0.90438 0.4390 0.740801 0.111094
-#> 64 0.92 0.92843 0.4228 0.796159 0.110529
-#> 65 0.93 0.92945 0.3784 0.776413 0.091840
-#> 66 0.94 0.93024 0.3339 0.750849 0.074917
-#> 67 0.95 0.99618 0.2783 0.982831 0.072046
-#> 68 0.96 0.99936 0.1897 0.995734 0.045477
-#> 69 0.97 0.99963 0.1172 0.996022 0.026306
-#> 70 0.98 0.99990 0.0279 0.995653 0.005806
+#> cut-off SN SP
+#> 1 0.00 0.00000 1.0000
+#> 2 0.01 0.01306 0.9978
+#> 3 0.03 0.02703 0.9958
+#> 4 0.05 0.04880 0.9958
+#> 5 0.06 0.06077 0.9933
+#> 6 0.07 0.06077 0.9877
+#> 7 0.08 0.08253 0.9877
+#> 8 0.09 0.10430 0.9877
+#> 9 0.10 0.12607 0.9877
+#> 10 0.13 0.14478 0.9813
+#> 11 0.17 0.15942 0.9795
+#> 12 0.18 0.18119 0.9795
+#> 13 0.19 0.18119 0.9739
+#> 14 0.20 0.23145 0.9700
+#> 15 0.21 0.28848 0.9679
+#> 16 0.22 0.30214 0.9658
+#> 17 0.23 0.32391 0.9602
+#> 18 0.25 0.34567 0.9602
+#> 19 0.26 0.36360 0.9481
+#> 20 0.30 0.36360 0.9425
+#> 21 0.32 0.38537 0.9425
+#> 22 0.34 0.40714 0.9425
+#> 23 0.36 0.42891 0.9369
+#> 24 0.37 0.45067 0.9369
+#> 25 0.41 0.49421 0.9369
+#> 26 0.45 0.50564 0.9287
+#> 27 0.46 0.50564 0.9231
+#> 28 0.47 0.51426 0.9141
+#> 29 0.51 0.52846 0.9066
+#> 30 0.54 0.53187 0.8963
+#> 31 0.55 0.55364 0.8851
+#> 32 0.56 0.56056 0.8813
+#> 33 0.57 0.60409 0.8758
+#> 34 0.58 0.64763 0.8758
+#> 35 0.60 0.66939 0.8758
+#> 36 0.61 0.66939 0.8702
+#> 37 0.62 0.66939 0.8590
+#> 38 0.63 0.69619 0.8547
+#> 39 0.65 0.71796 0.8547
+#> 40 0.66 0.71796 0.8491
+#> 41 0.68 0.71908 0.8382
+#> 42 0.69 0.74085 0.8382 *
+#> 43 0.70 0.74085 0.8327
+#> 44 0.71 0.74530 0.8282
+#> 45 0.72 0.74530 0.8226
+#> 46 0.73 0.74530 0.8059
+#> 47 0.74 0.76707 0.8059
+#> 48 0.75 0.77172 0.7847
+#> 49 0.76 0.77172 0.7791
+#> 50 0.77 0.77398 0.7630
+#> 51 0.78 0.77398 0.7574
+#> 52 0.79 0.77398 0.7462
+#> 53 0.80 0.79806 0.7412
+#> 54 0.81 0.82369 0.7255
+#> 55 0.82 0.83206 0.6997
+#> 56 0.83 0.85792 0.6784
+#> 57 0.84 0.85843 0.6618
+#> 58 0.85 0.86268 0.6349
+#> 59 0.86 0.86854 0.5918
+#> 60 0.87 0.87327 0.5762
+#> 61 0.88 0.87327 0.5483
+#> 62 0.89 0.87385 0.5373
+#> 63 0.90 0.88081 0.4609
+#> 64 0.91 0.90438 0.4390
+#> 65 0.92 0.92843 0.4228
+#> 66 0.93 0.92945 0.3784
+#> 67 0.94 0.93024 0.3339
+#> 68 0.95 0.99618 0.2783
+#> 69 0.96 0.99936 0.1897
+#> 70 0.97 0.99963 0.1172
+#> 71 0.98 0.99990 0.0279
+#> 72 0.99 1.00000 0.0000
#>
tvAUC(roc)
#>
#> Time-dependent AUC for the Joint Model jointFit
#>
-#> Estimated AUC: 0.8374
+#> Estimated AUC: 0.8374 (95% CI: 0.7618-0.8338)
#> At time: 7
#> Using information up to time: 4 (225 subjects still at risk)
#> Accounting for censoring using model-based weights
diff --git a/docs/reference/aids.html b/docs/reference/aids.html
index 10f4683..28498ac 100644
--- a/docs/reference/aids.html
+++ b/docs/reference/aids.html
@@ -24,7 +24,7 @@
diff --git a/docs/reference/coda_methods.html b/docs/reference/coda_methods.html
index 8e4ad07..8906558 100644
--- a/docs/reference/coda_methods.html
+++ b/docs/reference/coda_methods.html
@@ -23,7 +23,7 @@
diff --git a/docs/reference/cr_setup.html b/docs/reference/cr_setup.html
index 71c45df..584fec5 100644
--- a/docs/reference/cr_setup.html
+++ b/docs/reference/cr_setup.html
@@ -25,7 +25,7 @@
diff --git a/docs/reference/index.html b/docs/reference/index.html
index 71736b7..693acb1 100644
--- a/docs/reference/index.html
+++ b/docs/reference/index.html
@@ -23,7 +23,7 @@
diff --git a/docs/reference/jm.html b/docs/reference/jm.html
index 34f03b6..828625f 100644
--- a/docs/reference/jm.html
+++ b/docs/reference/jm.html
@@ -23,7 +23,7 @@
@@ -389,7 +389,9 @@ Arguments
Details
Value
@@ -509,7 +511,7 @@ Examples
#> iterations per chain: 11000
#> burn-in per chain: 1000
#> thinning: 1
-#> time: 37 sec
+#> time: 36 sec
traceplot(joint_model_fit_1)
@@ -789,7 +791,7 @@ Examples
#> iterations per chain: 11000
#> burn-in per chain: 1000
#> thinning: 1
-#> time: 1.6 min
+#> time: 1.8 min
# }