forked from Traumflug/Teacup_Firmware
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdda_maths.c
176 lines (150 loc) · 4.37 KB
/
dda_maths.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/** \file
\brief Mathematic algorithms for the digital differential analyser (DDA).
*/
#include "dda_maths.h"
#include <stdlib.h>
#include <stdint.h>
/*!
Integer multiply-divide algorithm. Returns the same as muldiv(multiplicand, multiplier, divisor), but also allowing to use precalculated quotients and remainders.
\param multiplicand
\param qn ( = multiplier / divisor )
\param rn ( = multiplier % divisor )
\param divisor
\return rounded result of multiplicand * multiplier / divisor
Calculate a * b / c, without overflowing and without using 64-bit integers.
Doing this the standard way, a * b could easily overflow, even if the correct
overall result fits into 32 bits. This algorithm avoids this intermediate
overflow and delivers valid results for all cases where each of the three
operators as well as the result fits into 32 bits.
Found on http://stackoverflow.com/questions/4144232/
how-to-calculate-a-times-b-divided-by-c-only-using-32-bit-integer-types-even-i
*/
const int32_t muldivQR(int32_t multiplicand, uint32_t qn, uint32_t rn,
uint32_t divisor) {
uint32_t quotient = 0;
uint32_t remainder = 0;
uint8_t negative_flag = 0;
if (multiplicand < 0) {
negative_flag = 1;
multiplicand = -multiplicand;
}
while(multiplicand) {
if (multiplicand & 1) {
quotient += qn;
remainder += rn;
if (remainder >= divisor) {
quotient++;
remainder -= divisor;
}
}
multiplicand >>= 1;
qn <<= 1;
rn <<= 1;
if (rn >= divisor) {
qn++;
rn -= divisor;
}
}
// rounding
if (remainder > divisor / 2)
quotient++;
// remainder is valid here, but not returned
return negative_flag ? -((int32_t)quotient) : (int32_t)quotient;
}
// courtesy of http://www.flipcode.com/archives/Fast_Approximate_Distance_Functions.shtml
/*! linear approximation 2d distance formula
\param dx distance in X plane
\param dy distance in Y plane
\return 3-part linear approximation of \f$\sqrt{\Delta x^2 + \Delta y^2}\f$
see http://www.flipcode.com/archives/Fast_Approximate_Distance_Functions.shtml
*/
uint32_t approx_distance(uint32_t dx, uint32_t dy) {
uint32_t min, max, approx;
if ( dx < dy ) {
min = dx;
max = dy;
} else {
min = dy;
max = dx;
}
approx = ( max * 1007 ) + ( min * 441 );
if ( max < ( min << 4 ))
approx -= ( max * 40 );
// add 512 for proper rounding
return (( approx + 512 ) >> 10 );
}
// courtesy of http://www.oroboro.com/rafael/docserv.php/index/programming/article/distance
/*! linear approximation 3d distance formula
\param dx distance in X plane
\param dy distance in Y plane
\param dz distance in Z plane
\return 3-part linear approximation of \f$\sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2}\f$
see http://www.oroboro.com/rafael/docserv.php/index/programming/article/distance
*/
uint32_t approx_distance_3(uint32_t dx, uint32_t dy, uint32_t dz) {
uint32_t min, med, max, approx;
if ( dx < dy ) {
min = dy;
med = dx;
} else {
min = dx;
med = dy;
}
if ( dz < min ) {
max = med;
med = min;
min = dz;
} else if ( dz < med ) {
max = med;
med = dz;
} else {
max = dz;
}
approx = ( max * 860 ) + ( med * 851 ) + ( min * 520 );
if ( max < ( med << 1 )) approx -= ( max * 294 );
if ( max < ( min << 2 )) approx -= ( max * 113 );
if ( med < ( min << 2 )) approx -= ( med * 40 );
// add 512 for proper rounding
return (( approx + 512 ) >> 10 );
}
/*!
integer square root algorithm
\param a find square root of this number
\return sqrt(a - 1) < returnvalue <= sqrt(a)
see http://www.embedded-systems.com/98/9802fe2.htm
*/
// courtesy of http://www.embedded-systems.com/98/9802fe2.htm
uint16_t int_sqrt(uint32_t a) {
uint32_t rem = 0;
uint32_t root = 0;
uint16_t i;
for (i = 0; i < 16; i++) {
root <<= 1;
rem = ((rem << 2) + (a >> 30));
a <<= 2;
root++;
if (root <= rem) {
rem -= root;
root++;
}
else
root--;
}
return (uint16_t) ((root >> 1) & 0xFFFFL);
}
// this is an ultra-crude pseudo-logarithm routine, such that:
// 2 ^ msbloc(v) >= v
/*! crude logarithm algorithm
\param v value to find \f$log_2\f$ of
\return floor(log(v) / log(2))
*/
const uint8_t msbloc (uint32_t v) {
uint8_t i;
uint32_t c;
for (i = 31, c = 0x80000000; i; i--) {
if (v & c)
return i;
c >>= 1;
}
return 0;
}