-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
233 lines (191 loc) · 8.83 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import h5py
import plyfile
import numpy as np
from matplotlib import cm
import scipy.spatial.distance as distance
def save_ply(points, filename, colors=None, normals=None):
vertex = np.array([tuple(p) for p in points], dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4')])
n = len(vertex)
desc = vertex.dtype.descr
if normals is not None:
vertex_normal = np.array([tuple(n) for n in normals], dtype=[('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4')])
assert len(vertex_normal) == n
desc = desc + vertex_normal.dtype.descr
if colors is not None:
vertex_color = np.array([tuple(c * 255) for c in colors],
dtype=[('red', 'u1'), ('green', 'u1'), ('blue', 'u1')])
assert len(vertex_color) == n
desc = desc + vertex_color.dtype.descr
vertex_all = np.empty(n, dtype=desc)
for prop in vertex.dtype.names:
vertex_all[prop] = vertex[prop]
if normals is not None:
for prop in vertex_normal.dtype.names:
vertex_all[prop] = vertex_normal[prop]
if colors is not None:
for prop in vertex_color.dtype.names:
vertex_all[prop] = vertex_color[prop]
ply = plyfile.PlyData([plyfile.PlyElement.describe(vertex_all, 'vertex')], text=False)
if not os.path.exists(os.path.dirname(filename)):
os.makedirs(os.path.dirname(filename))
ply.write(filename)
def save_ply_property(points, property, property_max, filename, cmap_name='Set1'):
point_num = points.shape[0]
colors = np.full(points.shape, 0.5)
cmap = cm.get_cmap(cmap_name)
for point_idx in range(point_num):
colors[point_idx] = cmap(property[point_idx] / property_max)[:3]
save_ply(points, filename, colors)
def save_ply_batch(points_batch, file_path, points_num=None):
batch_size = points_batch.shape[0]
if type(file_path) != list:
basename = os.path.splitext(file_path)[0]
ext = '.ply'
for batch_idx in range(batch_size):
point_num = points_batch.shape[1] if points_num is None else points_num[batch_idx]
if type(file_path) == list:
save_ply(points_batch[batch_idx][:point_num], file_path[batch_idx])
else:
save_ply(points_batch[batch_idx][:point_num], '%s_%04d%s' % (basename, batch_idx, ext))
def save_ply_property_batch(points_batch, property_batch, file_path, points_num=None, property_max=None,
cmap_name='Set1'):
batch_size = points_batch.shape[0]
if type(file_path) != list:
basename = os.path.splitext(file_path)[0]
ext = '.ply'
property_max = np.max(property_batch) if property_max is None else property_max
for batch_idx in range(batch_size):
point_num = points_batch.shape[1] if points_num is None else points_num[batch_idx]
if type(file_path) == list:
save_ply_property(points_batch[batch_idx][:point_num], property_batch[batch_idx][:point_num],
property_max, file_path[batch_idx], cmap_name)
else:
save_ply_property(points_batch[batch_idx][:point_num], property_batch[batch_idx][:point_num],
property_max, '%s_%04d%s' % (basename, batch_idx, ext), cmap_name)
def save_ply_point_with_normal(data_sample, folder):
for idx, sample in enumerate(data_sample):
filename_pts = os.path.join(folder, '{:08d}.ply'.format(idx))
save_ply(sample[..., :3], filename_pts, normals=sample[..., 3:])
def grouped_shuffle(inputs):
for idx in range(len(inputs) - 1):
assert (len(inputs[idx]) == len(inputs[idx + 1]))
shuffle_indices = np.arange(inputs[0].shape[0])
np.random.shuffle(shuffle_indices)
outputs = []
for idx in range(len(inputs)):
outputs.append(inputs[idx][shuffle_indices, ...])
return outputs
def load_cls(filelist):
points = []
labels = []
folder = os.path.dirname(filelist)
for line in open(filelist):
filename = line.rstrip()
data = h5py.File(os.path.join(folder, filename))
if 'normal' in data:
points.append(np.concatenate([data['data'][...], data['data'][...]], axis=-1).astype(np.float32))
else:
points.append(data['data'][...].astype(np.float32))
labels.append(np.squeeze(data['label'][:]).astype(np.int32))
return (np.concatenate(points, axis=0),
np.concatenate(labels, axis=0))
def load_cls_train_val(filelist, filelist_val):
data_train, label_train = grouped_shuffle(load_cls(filelist))
data_val, label_val = load_cls(filelist_val)
return data_train, label_train, data_val, label_val
def load_cls_BU3D(filelist):
points = []
labels = []
folder = os.path.dirname(filelist)
for line in open(filelist):
filename = line.rstrip()
data = h5py.File(os.path.join(folder, filename))
if 'normal' in data and 'shape_index' in data:
input_x = np.concatenate([data['data'][...], data['data'][...], data['normal'][...], data['shape_index'][...]], axis=-1).astype(np.float32)
input_x = np.transpose(input_x, (1, 0, 2))
input_x = np.random.permutation(input_x)
input_x = np.transpose(input_x, (1, 0, 2))
points.append(input_x)
else:
points.append(data['data'][...].astype(np.float32))
labels.append(data['label'][...][0].astype(np.int32))
return (np.concatenate(points, axis=0),
np.concatenate(labels, axis=0))
def load_cls_train_val_BU3D(filelist, filelist_val):
data_train, label_train = grouped_shuffle(load_cls_BU3D(filelist))
data_val, label_val = load_cls_BU3D(filelist_val)
return data_train, label_train, data_val, label_val
def load_verification(filelist):
points = []
labels = []
for lid, line in enumerate(open(filelist)):
if lid % 100 == 0:
print('train_data', lid)
sys.stdout.flush()
filename = line.rstrip()
data = h5py.File(filename)
if 'normal' in data and 'shape_index' in data:
input_x = np.concatenate([data['data'][...], data['data'][...], data['normal'][...], data['shape_index'][...]], axis=-1).astype(np.float32)
else:
input_x = np.concatenate([data['data'][...], data['data'][...]], axis=-1).astype(np.float32)
input_x = np.transpose(input_x, (1, 0, 2))
input_x = np.random.permutation(input_x)
input_x = np.transpose(input_x, (1, 0, 2))
points.append(input_x)
labels.append(data['label'][...][0].astype(np.int32))
return (np.concatenate(points, axis=0),
np.concatenate(labels, axis=0))
def load_verification_val(filelist):
points = []
labels = []
fid = open(filelist, 'r')
lines = fid.readlines()
fid.close()
lines = [line.rstrip() for line in lines]
verif_lines = [line for line in lines if line.endswith('N_N_0.mat')]
verif_lines.sort()
valid_lines = [line for line in lines if not line.endswith('N_N_0.mat')]
valid_lines.sort()
verif_idx = len(verif_lines)
lines = verif_lines + valid_lines
for lid, filename in enumerate(lines):
if lid % 100 == 0:
print('valid_data', lid)
sys.stdout.flush()
data = h5py.File(filename)
if 'normal' in data and 'shape_index' in data:
input_x = np.concatenate([data['data'][...], data['data'][...], data['normal'][...], data['shape_index'][...]], axis=-1).astype(np.float32)
else:
input_x = np.concatenate([data['data'][...], data['data'][...]], axis=-1).astype(np.float32)
input_x = np.transpose(input_x, (1, 0, 2))
input_x = np.random.permutation(input_x)
input_x = np.transpose(input_x, (1, 0, 2))
points.append(input_x)
labels.append(data['label'][...][0].astype(np.int32))
return points, labels, verif_idx
def load_verification_train_val(filelist, filelist_val):
data_train, label_train = grouped_shuffle(load_verification(filelist))
data_val, label_val, verif_idx = load_verification_val(filelist_val)
return data_train, label_train, data_val, label_val, verif_idx
def load_seg(filelist):
points = []
labels = []
point_nums = []
labels_seg = []
folder = os.path.dirname(filelist)
for line in open(filelist):
filename = line.rstrip()
data = h5py.File(os.path.join(folder, filename))
points.append(data['data'][...].astype(np.float32))
labels.append(data['label'][...].astype(np.int32))
point_nums.append(data['data_num'][...].astype(np.int32))
labels_seg.append(data['label_seg'][...].astype(np.int32))
return (np.concatenate(points, axis=0),
np.concatenate(labels, axis=0),
np.concatenate(point_nums, axis=0),
np.concatenate(labels_seg, axis=0))