forked from TheAlgorithms/Rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sha256.rs
340 lines (315 loc) · 11.3 KB
/
sha256.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/*!
* SHA-2 256 bit implementation
* This implementation is based on RFC6234
* Keep in mind that the amount of data (in bits) processed should always be an
* integer multiple of 8
*/
// The constants are tested to make sure they are correct
pub const H0: [u32; 8] = [
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19,
];
pub const K: [u32; 64] = [
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
];
// The following functions are implemented according to page 10 of RFC6234
#[inline]
fn ch(x: u32, y: u32, z: u32) -> u32 {
(x & y) ^ ((!x) & z)
}
#[inline]
fn maj(x: u32, y: u32, z: u32) -> u32 {
(x & y) ^ (x & z) ^ (y & z)
}
#[inline]
fn bsig0(x: u32) -> u32 {
x.rotate_right(2) ^ x.rotate_right(13) ^ x.rotate_right(22)
}
#[inline]
fn bsig1(x: u32) -> u32 {
x.rotate_right(6) ^ x.rotate_right(11) ^ x.rotate_right(25)
}
#[inline]
fn ssig0(x: u32) -> u32 {
x.rotate_right(7) ^ x.rotate_right(18) ^ (x >> 3)
}
#[inline]
fn ssig1(x: u32) -> u32 {
x.rotate_right(17) ^ x.rotate_right(19) ^ (x >> 10)
}
pub struct SHA256 {
/// The current block to be processed, 512 bits long
buffer: [u32; 16],
/// Length (bits) of the message, should always be a multiple of 8
length: u64,
/// The current hash value. Note: this value is invalid unless `finalize`
/// is called
pub h: [u32; 8],
/// Message schedule
w: [u32; 64],
pub finalized: bool,
// Temporary values:
round: [u32; 8],
}
fn process_block(h: &mut [u32; 8], w: &mut [u32; 64], round: &mut [u32; 8], buf: &[u32; 16]) {
// Prepare the message schedule:
w[..buf.len()].copy_from_slice(&buf[..]);
for i in buf.len()..w.len() {
w[i] = ssig1(w[i - 2])
.wrapping_add(w[i - 7])
.wrapping_add(ssig0(w[i - 15]))
.wrapping_add(w[i - 16]);
}
round.copy_from_slice(h);
for i in 0..w.len() {
let t1 = round[7]
.wrapping_add(bsig1(round[4]))
.wrapping_add(ch(round[4], round[5], round[6]))
.wrapping_add(K[i])
.wrapping_add(w[i]);
let t2 = bsig0(round[0]).wrapping_add(maj(round[0], round[1], round[2]));
round[7] = round[6];
round[6] = round[5];
round[5] = round[4];
round[4] = round[3].wrapping_add(t1);
round[3] = round[2];
round[2] = round[1];
round[1] = round[0];
round[0] = t1.wrapping_add(t2);
}
for i in 0..h.len() {
h[i] = h[i].wrapping_add(round[i]);
}
}
impl SHA256 {
pub fn new_default() -> Self {
SHA256 {
buffer: [0u32; 16],
length: 0,
h: H0,
w: [0u32; 64],
round: [0u32; 8],
finalized: false,
}
}
/// Note: buffer should be empty before calling this!
pub fn process_block(&mut self, buf: &[u32; 16]) {
process_block(&mut self.h, &mut self.w, &mut self.round, buf);
self.length += 512;
}
pub fn update(&mut self, data: &[u8]) {
if data.is_empty() {
return;
}
let offset = (((32 - (self.length & 31)) & 31) >> 3) as usize;
let mut buf_ind = ((self.length & 511) >> 5) as usize;
for (i, &byte) in data.iter().enumerate().take(offset) {
self.buffer[buf_ind] ^= (byte as u32) << ((offset - i - 1) << 3);
}
self.length += (data.len() as u64) << 3;
if offset > data.len() {
return;
}
if offset > 0 {
buf_ind += 1;
}
if data.len() > 3 {
for i in (offset..(data.len() - 3)).step_by(4) {
if buf_ind & 16 == 16 {
process_block(&mut self.h, &mut self.w, &mut self.round, &self.buffer);
buf_ind = 0;
}
self.buffer[buf_ind] = ((data[i] as u32) << 24)
^ ((data[i + 1] as u32) << 16)
^ ((data[i + 2] as u32) << 8)
^ data[i + 3] as u32;
buf_ind += 1;
}
}
if buf_ind & 16 == 16 {
process_block(&mut self.h, &mut self.w, &mut self.round, &self.buffer);
buf_ind = 0;
}
self.buffer[buf_ind] = 0;
let rem_ind = offset + ((data.len() - offset) & !0b11);
for (i, &byte) in data[rem_ind..].iter().enumerate() {
self.buffer[buf_ind] ^= (byte as u32) << ((3 - i) << 3);
}
}
pub fn get_hash(&mut self) -> [u8; 32] {
// we should first add a `1` bit to the end of the buffer, then we will
// add enough 0s so that the length becomes (512k + 448). After that we
// will append the binary representation of length to the data
if !self.finalized {
self.finalized = true;
let clen = (self.length + 8) & 511;
let num_0 = match clen.cmp(&448) {
std::cmp::Ordering::Greater => (448 + 512 - clen) >> 3,
_ => (448 - clen) >> 3,
};
let mut padding: Vec<u8> = vec![0_u8; (num_0 + 9) as usize];
let len = padding.len();
padding[0] = 0x80;
padding[len - 8] = (self.length >> 56) as u8;
padding[len - 7] = (self.length >> 48) as u8;
padding[len - 6] = (self.length >> 40) as u8;
padding[len - 5] = (self.length >> 32) as u8;
padding[len - 4] = (self.length >> 24) as u8;
padding[len - 3] = (self.length >> 16) as u8;
padding[len - 2] = (self.length >> 8) as u8;
padding[len - 1] = self.length as u8;
self.update(&padding);
}
assert_eq!(self.length & 511, 0);
let mut result = [0u8; 32];
for i in (0..32).step_by(4) {
result[i] = (self.h[i >> 2] >> 24) as u8;
result[i + 1] = (self.h[i >> 2] >> 16) as u8;
result[i + 2] = (self.h[i >> 2] >> 8) as u8;
result[i + 3] = self.h[i >> 2] as u8;
}
result
}
}
impl super::Hasher<32> for SHA256 {
fn new_default() -> Self {
SHA256::new_default()
}
fn update(&mut self, data: &[u8]) {
self.update(data);
}
fn get_hash(&mut self) -> [u8; 32] {
self.get_hash()
}
}
#[cfg(test)]
pub mod tests {
use super::*;
use crate::math::LinearSieve;
use std::fmt::Write;
// Let's keep this utility function
pub fn get_hash_string(hash: &[u8; 32]) -> String {
let mut result = String::new();
result.reserve(64);
for &ch in hash {
write!(&mut result, "{ch:02x}").unwrap();
}
result
}
#[test]
fn test_constants() {
let mut ls = LinearSieve::new();
ls.prepare(311).unwrap();
assert_eq!(64, ls.primes.len());
assert_eq!(311, ls.primes[63]);
let float_len = 52;
let constant_len = 32;
for (pos, &k) in K.iter().enumerate() {
let a: f64 = ls.primes[pos] as f64;
let bits = a.cbrt().to_bits();
let exp = bits >> float_len; // The sign bit is already 0
//(exp - 1023) can be bigger than 0, we must include more bits.
let k_ref = ((bits & ((1_u64 << float_len) - 1))
>> (float_len - constant_len + 1023 - exp)) as u32;
assert_eq!(k, k_ref);
}
for (pos, &h) in H0.iter().enumerate() {
let a: f64 = ls.primes[pos] as f64;
let bits = a.sqrt().to_bits();
let exp = bits >> float_len;
let h_ref = ((bits & ((1_u64 << float_len) - 1))
>> (float_len - constant_len + 1023 - exp)) as u32;
assert_eq!(h, h_ref);
}
}
// To test the hashes, you can use the following command on linux:
// echo -n 'STRING' | sha256sum
// the `-n` is because by default, echo adds a `\n` to its output
#[test]
fn empty() {
let mut res = SHA256::new_default();
assert_eq!(
res.get_hash(),
[
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f,
0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b,
0x78, 0x52, 0xb8, 0x55
]
);
}
#[test]
fn ascii() {
let mut res = SHA256::new_default();
res.update(&b"The quick brown fox jumps over the lazy dog".to_vec());
assert_eq!(
res.get_hash(),
[
0xD7, 0xA8, 0xFB, 0xB3, 0x07, 0xD7, 0x80, 0x94, 0x69, 0xCA, 0x9A, 0xBC, 0xB0, 0x08,
0x2E, 0x4F, 0x8D, 0x56, 0x51, 0xE4, 0x6D, 0x3C, 0xDB, 0x76, 0x2D, 0x02, 0xD0, 0xBF,
0x37, 0xC9, 0xE5, 0x92
]
)
}
#[test]
fn ascii_avalanche() {
let mut res = SHA256::new_default();
res.update(&b"The quick brown fox jumps over the lazy dog.".to_vec());
assert_eq!(
res.get_hash(),
[
0xEF, 0x53, 0x7F, 0x25, 0xC8, 0x95, 0xBF, 0xA7, 0x82, 0x52, 0x65, 0x29, 0xA9, 0xB6,
0x3D, 0x97, 0xAA, 0x63, 0x15, 0x64, 0xD5, 0xD7, 0x89, 0xC2, 0xB7, 0x65, 0x44, 0x8C,
0x86, 0x35, 0xFB, 0x6C
]
);
// Test if finalization is not repeated twice
assert_eq!(
res.get_hash(),
[
0xEF, 0x53, 0x7F, 0x25, 0xC8, 0x95, 0xBF, 0xA7, 0x82, 0x52, 0x65, 0x29, 0xA9, 0xB6,
0x3D, 0x97, 0xAA, 0x63, 0x15, 0x64, 0xD5, 0xD7, 0x89, 0xC2, 0xB7, 0x65, 0x44, 0x8C,
0x86, 0x35, 0xFB, 0x6C
]
)
}
#[test]
fn long_ascii() {
let mut res = SHA256::new_default();
let val = &b"The quick brown fox jumps over the lazy dog.".to_vec();
for _ in 0..1000 {
res.update(val);
}
let hash = res.get_hash();
assert_eq!(
&get_hash_string(&hash),
"c264fca077807d391df72fadf39dd63be21f1823f65ca530c9637760eabfc18c"
);
let mut res = SHA256::new_default();
let val = &b"a".to_vec();
for _ in 0..999 {
res.update(val);
}
let hash = res.get_hash();
assert_eq!(
&get_hash_string(&hash),
"d9fe27f3d807a7c46467325f7189495e82b099ce2e14c5b16cc76697fa909f81"
)
}
#[test]
fn short_ascii() {
let mut res = SHA256::new_default();
let val = &b"a".to_vec();
res.update(val);
let hash = res.get_hash();
assert_eq!(
&get_hash_string(&hash),
"ca978112ca1bbdcafac231b39a23dc4da786eff8147c4e72b9807785afee48bb"
);
}
}