-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathswitching_tests.ox
521 lines (456 loc) · 15.6 KB
/
switching_tests.ox
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
#include <oxstd.oxh>
#include <oxprob.oxh>
#import <switching>
///////////////////////////////////////////////////////////////////////
//
class PoissonMix
{
PoissonMix(const mData);
virtual UpdatePar(vP);
virtual LogLikAt(const vP);
CheckPar(const vP);
decl m_mData;
};
PoissonMix::PoissonMix(const mData)
{
m_mData = mData;
}
PoissonMix::CheckPar(const vP)
{
return vP;
}
PoissonMix::UpdatePar(vP)
{
decl p = vP[0], mu1 = vP[1], mu2 = vP[2], pi1, pi2, eps = 1e-12;
decl vi = range(0, sizerc(m_mData) - 1)';
decl pfac = p .* exp(vi .* (log(mu1) - log(mu2)) - (mu1 - mu2));
pi1 = pfac ./ (pfac + (1 - p));
pi2 = p ./ (pfac + (1 - p));
// update parameters
decl npi1 = m_mData'pi1, npi2 = m_mData'pi2, vin = vi .* m_mData;
p = npi1 / sumc(m_mData);
p = setbounds(p, eps, 1 - eps);
mu1 = (vin'pi1) / npi1;
mu2 = (vin'pi2) / npi2;
vP[0] = p; vP[1] = mu1; vP[2] = mu2 > eps ? mu2 : eps;
return vP;
}
PoissonMix::LogLikAt(const vP)
{
decl p = vP[0], mu1 = vP[1], mu2 = vP[2];
decl vi = range(0, sizerc(m_mData) - 1)';
decl fac1 = exp(-mu1 + vi .* log(mu1) - loggamma(vi + 1));
decl fac2 = exp(-mu2 + vi .* log(mu2) - loggamma(vi + 1));
decl vloglik = m_mData .* log(p .* fac1 + (1 - p) .* fac2);
return double(sumc(vloglik));
}
///////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////
//
class MultivariateT
{
MultivariateT(const mData, const dNu, const bUsePX);
MapToArgs(const vP);
MapToPar(const vMu, const mSigma);
virtual UpdatePar(vP);
virtual LogLikAt(const vP);
CheckPar(const vP);
decl m_mData, m_dNu;
decl m_bUsePX;
};
MultivariateT::MultivariateT(const mData, const dNu, const bUsePX)
{
m_mData = mData;
m_dNu = dNu;
m_bUsePX = bUsePX;
}
MultivariateT::CheckPar(const vP)
{
return vP;
}
MultivariateT::MapToArgs(const vP)
{
decl cp = sizec(m_mData);
decl mu = vP[ : cp - 1], chol = setupper(unvech(vP[cp : ]), 0);
decl chol_inv = solvelu(chol, 0, 0, unit(cp));
decl sigma_inv = chol_inv'chol_inv;
return { mu', sigma_inv, chol} ;
}
MultivariateT::MapToPar(const vMu, const mSigma)
{
decl chol = choleski(mSigma);
if (chol == 0)
return vec(vMu) | vech(nans(sizer(mSigma), sizec(mSigma)));
return vec(vMu) | vech(chol);
}
MultivariateT::UpdatePar(vP)
{
decl cp = sizec(m_mData), mu, sigma, sigma_inv;
[mu, sigma_inv] = MapToArgs(vP);
// E step
decl w = (m_dNu + cp) ./ (m_dNu + outer(m_mData - mu, sigma_inv, 'd'))';
decl sumw = sumc(w);
// M step
mu = sumc(w .* m_mData) / sumw;
decl fac = m_bUsePX ? sumw : sizer(m_mData);
sigma = outer( sqrt(w) .* (m_mData - mu), <>, 'o') / fac;
return MapToPar(mu, sigma);
}
MultivariateT::LogLikAt(const vP)
{
decl cp = sizec(m_mData), mu, chol, sigma_inv;
[mu, sigma_inv, chol] = MapToArgs(vP);
decl logdet = 2 * sumr(log(diagonal(chol))) + (m_dNu + cp) * meanr(log(m_dNu + outer(m_mData - mu, sigma_inv, 'd')));
return double(-logdet);
}
///////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////
//
class Parafac
{
Parafac(const mData_I_JK, const cI, const cJ, const cK, const cF, const bConcentrate=TRUE);
static Left(const mData_I_JK, const cI, const cJ, const cK);
static Transpose(const mData_I_JK, const cI, const cJ, const cK);
static Olsr(const mData, const mB, const mC);
static ColKron(const mA, const mB);
static Normalize(const mA, const mB, const mC);
MapToArgs(const vP);
MapToPar(const mA, const mB, const mC);
virtual UpdatePar(vP);
virtual LogLikAt(const vP);
CheckPar(const vP);
decl m_mData_I_JK, m_mData_J_IK, m_mData_K_IJ;
decl m_cI, m_cJ, m_cK, m_cF;
decl m_bConcentrate;
};
Parafac::Parafac(const mData_I_JK, const cI, const cJ, const cK, const cF, const bConcentrate)
{
m_mData_I_JK = mData_I_JK;
m_mData_J_IK = Transpose(mData_I_JK, cI, cJ, cK);
m_mData_K_IJ = Left(mData_I_JK, cI, cJ, cK);
m_cI = cI;
m_cJ = cJ;
m_cK = cK;
m_cF = cF;
m_bConcentrate = bConcentrate;
}
Parafac::Left(const mData_I_JK, const cI, const cJ, const cK)
{
// map I_JK to K_JI or K_IJ
// =0 | | | | =0 | | | | =0 | | | |
// i=1 | k=0 | k=1 | k=2 |;vecr:k=1| i=0 | i=1 | i=2 |; or vec:k=1 | j=0 | j=1 | j=2 |
// =2 | | | | =2 | | | | =2 | | | |
// j=0,1, j=0,1, j=0,1, j=0,1, j=0,1, j=0,1, i=0,1, i=0,1, i=0,1,
// Get k as first index: extract K matrices and store in rows
decl data = new matrix[cK][cI * cJ];
for (decl k = 0; k < cK; ++k)
data[k][] = vec(mData_I_JK[][k * cJ : (k + 1) * cJ - 1])';
return data;
}
Parafac::Transpose(const mData_I_JK, const cI, const cJ, const cK)
{
// map I_JK to J_IK
decl data = new matrix[cJ][cI * cK];
for (decl k = 0; k < cK; ++k)
data[][k * cI : (k + 1) * cI - 1] = mData_I_JK[][k * cJ : (k + 1) * cJ - 1]';
return data;
}
Parafac::Olsr(const mData, const mB, const mC)
{
return (mData * ColKron(mC, mB)) * invertgen((mC'mC) .* (mB'mB), 3)';
}
Parafac::ColKron(const mA, const mB)
{
decl cf = sizec(mA), mc = new matrix[sizer(mA) * sizer(mB)][cf];
for (decl i = 0; i < cf; ++i)
mc[][i] = mA[][i] ** mB[][i];
return mc;
}
Parafac::Normalize(const mA, const mB, const mC)
{
decl norm_a = sqrt(sumsqrc(mA)), norm_b = sqrt(sumsqrc(mB));
decl skipc = mC == <>, norm_c = skipc ? ones(1, sizec(mA)) : sqrt(sumsqrc(mC));
decl scale = pow(norm_a .* norm_b .* norm_c, skipc ? 1/2 : 1/3);
return {mA .* (scale ./ norm_a), mB .* (scale ./ norm_b), skipc ? <> : mC .* (scale ./ norm_c) };
}
Parafac::CheckPar(const vP)
{
return vP;
}
Parafac::MapToArgs(const vP)
{
decl ma = shape(vP, m_cI, m_cF), mb = shape(vP[m_cI * m_cF :], m_cJ, m_cF);
if (m_bConcentrate)
return { ma, mb, Olsr(m_mData_K_IJ, ma, mb)} ;
return { ma, mb, shape(vP[(m_cI + m_cJ) * m_cF :], m_cK, m_cF)} ;
}
Parafac::MapToPar(const mA, const mB, const mC)
{
if (m_bConcentrate)
return vec(mA) | vec(mB);
return vec(mA) | vec(mB) | vec(mC);
}
Parafac::UpdatePar(vP)
{
decl ma, mb, mc;
[ma, mb, mc] = MapToArgs(vP);
// olsr(m_mData_I_JK, ColKron(mc, mb)', &ma);
// olsr(m_mData_J_IK, ColKron(mc, ma)', &mb);
// olsr(m_mData_K_IJ, ColKron(mb, ma)', &mc);
ma = Olsr(m_mData_I_JK, mb, mc);
mb = Olsr(m_mData_J_IK, ma, mc);
if (m_bConcentrate)
[ma, mb] = Normalize(ma, mb, <>);
else
{
mc = Olsr(m_mData_K_IJ, ma, mb);
[ma, mb, mc] = Normalize(ma, mb, mc);
}
return MapToPar(ma, mb, mc);
}
Parafac::LogLikAt(const vP)
{
decl ma, mb, mc;
[ma, mb, mc] = MapToArgs(vP);
// same as -trace(eps'eps/T);
return -norm(m_mData_I_JK - ma * ColKron(mc, mb)', 'F') / sqrt(sizerc(m_mData_I_JK));
}
///////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////
//
class LowRank
{
LowRank(const mY, const mX, const cQ, const iR, const cS);
MapToArgs(const vP);
MapToPar(const mA, const mB);
virtual StartPar(iR=0);
virtual UpdatePar(vP);
virtual LogLikAt(const vP);
CheckPar(const vP);
decl m_mY, m_mX, m_cQ, m_iR, m_cS;
};
LowRank::LowRank(const mY, const mX, const cQ, const iR, const cS)
{
m_mY = mY; // n x 1
m_mX = mX; // n x qs
m_cQ = cQ; // A[q][r]
m_iR = iR; // rank
m_cS = cS; // B[s][r]
}
LowRank::MapToArgs(const vP)
{
decl ma = shape(vP, m_cQ, m_iR), mb = shape(vP[m_cQ * m_iR :], m_cS, m_iR);
return { ma, mb } ;
}
LowRank::MapToPar(const mA, const mB)
{
return vec(mA) | vec(mB);
}
LowRank::StartPar(iR)
{
decl vc, mc, mu, mw, mv, ma, mb, cxs;
cxs = max(sizec(m_mX) - sizer(m_mX), 0);
olsc(m_mY | zeros(cxs, 1), m_mX | zeros(cxs, sizec(m_mX)), &vc);
mc = shape(vc, m_cQ, m_cS);
// map to lower rank
decsvd(mc, &mu, &mw, &mv);
if (iR == 0)
iR = m_iR;
if (iR < sizerc(mw)) mw[iR : ] = 0;
ma = (mu .* mw)[][ : m_iR - 1]; mb = mv[][ : m_iR - 1];
return MapToPar(ma, mb);
}
LowRank::CheckPar(const vP)
{
decl ma, mb;
[ma, mb] = MapToArgs(vP);
return vec(ma * mb');
}
LowRank::UpdatePar(vP)
{
decl ma, mb, va, vbt, b, e;
[ma, mb] = MapToArgs(vP);
// estimate new B | A
olsc(m_mY, m_mX * (unit(m_cS) ** ma), &vbt);
mb = reshape(vbt, m_cS, m_iR);
// estimate new A | B
olsc(m_mY, m_mX * (mb ** unit(m_cQ)), &va);
ma = shape(va, m_cQ, m_iR);
return MapToPar(ma, mb);
}
LowRank::LogLikAt(const vP)
{
decl ma, mb, mc;
[ma, mb] = MapToArgs(vP);
mc = ma * mb';
return -sqrt(double(sumsqrc(m_mY - m_mX * vec(mc))) / sizer(m_mY));
}
///////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////
class MySwitching : Switching
{
MySwitching(iLineSearchMode);
static Report(mResult, time);
}
MySwitching::MySwitching(iLineSearchMode)
{
Switching();
SetLineSearchMode(iLineSearchMode);
SetLineSearchCrit(0);
SetLineSearchWarmUp(0);
}
MySwitching::Report(mResult, time)
{
mResult[][0] -= max(mResult[][0]);
println("%cf", {"%10.0f","%10.0f","%10.0f","%10.0f","%10.0f","%10.2f"}, "%c", {"iters","updates","logliks","failures","below","CPU(s)"},
meanc(mResult[][2:]) ~ sumc(mResult[][1] .> MAX_WEAK_CONV) ~ .NaN ~ (timer() - time) / 100);
}
///////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////
RunPoissonExp(const iLineSearchMode, const cM, bExtra=FALSE)
{
decl data = <162;267;271;185;111;61;27;8;3;1>;
decl model, switching, mresult = zeros(cM, 5), vp, dfunc, retval;
decl time = timer();
// run all experiments on the same seed
ranseed(-1);
parallel
for (decl i = 0; i < cM; ++i)
{
model = new PoissonMix(data);
switching = new MySwitching(iLineSearchMode);
switching.SetLineSearchWarmUp(3);
if (bExtra)
switching.SetExtraUpdate(1);
vp = 0.05 + ranu(1, 1) * 0.9 | ranu(2, 1) * 100;
[vp, dfunc, retval] = switching.Estimate(model.LogLikAt, model.UpdatePar, model.CheckPar,
vp, constant(1e-12, 3, 1), <1;100;100> - 1e-12, 1e-12, 10000, -1);
mresult[i][] = dfunc ~ switching.GetIterInfo();
delete model;
delete switching;
}
print("Poisson-mixture ", Switching::GetLineSearchName(iLineSearchMode), " M=", cM, bExtra ? " with extra update" : "");
MySwitching::Report(mresult, time);
return mresult;
}
RunCauchyExp(const iLineSearchMode, const cM, const bUsePX=TRUE, bExtra=FALSE)
{
decl data, mresult = zeros(cM, 5), cp = 50, nu = 1, ct = 100, vp, dfunc, retval, model, switching;
decl time = timer();
// run all experiments on the same seed
ranseed(-1);
parallel
for (decl i = 0; i < cM; ++i)
{
data = rant(ct, cp, nu);
model = new MultivariateT(data, nu, bUsePX);
switching = new MySwitching(iLineSearchMode);
switching.SetLineSearchWarmUp(3);
if (bExtra)
switching.SetExtraUpdate(1);
vp = meanc(data)' | vech(choleski(variance(data)));
[vp, dfunc, retval] = switching.Estimate(model.LogLikAt, model.UpdatePar, model.CheckPar,
vp, <>, <>, 1e-12, 10000, -1);
mresult[i][] = dfunc ~ switching.GetIterInfo();
delete model;
delete switching;
}
print("Multivariate-t ", Switching::GetLineSearchName(iLineSearchMode), " PX=", bUsePX, " M=", cM,
" p=", cp, " T=", ct, " no params=", sizerc(vp), bExtra ? " with extra update" : "");
MySwitching::Report(mresult, time);
return mresult;
}
RunParafacExp(const iLineSearchMode, const cM, const cI, const cF, const dSigma=0.1, const bConcentrate=FALSE)
{
decl data, mresult = zeros(cM, 5), vp, dfunc, retval, model, switching, ma, mb, mc, cj = cI, ck = cI, mu, mw;
// run all experiments on the same seed
ranseed(-1);
ma = 3 + unit(cI, cF); mb = 2 + unit(cj, cF); mc = 1 + unit(ck, cF);
[ma, mb, mc] = Parafac::Normalize(ma, mb, mc);
data = ma * Parafac::ColKron(mc, mb)' + rann(cI, cj * ck) * dSigma;
decl time = timer();
parallel
for (decl i = 0; i < cM; ++i)
{
model = new Parafac(data, cI, cj, ck, cF, bConcentrate);
switching = new MySwitching(iLineSearchMode);
vp = model.MapToPar(ma + (ranu(cI, cF) - 0.5)/10, mb + (ranu(cj, cF) - 0.5)/10, mc + (ranu(ck, cF) - 0.5)/10);
[vp, dfunc, retval] = switching.Estimate(model.LogLikAt, model.UpdatePar, model.CheckPar,
vp, <>, <>, 1e-12, 100000, -1);
mresult[i][] = dfunc ~ switching.GetIterInfo();
// decl abc = model.MapToArgs(vp);
// println(ma, mb, mc, Parafac::Normalize(abc[0], abc[1], abc[2]));
delete model;
delete switching;
}
print("Parafac ", Switching::GetLineSearchName(iLineSearchMode), " I=J=K=", cI, " F=", cF, " M=", cM,
" concentrate=", bConcentrate, " sigma=", dSigma);
MySwitching::Report(mresult, time);
return mresult;
}
RunLowRankExp(const iLineSearchMode, const cM, const cN, const cQ, const iR, const cS)
{
decl data, mresult = zeros(cM, 5), vp, dfunc, retval, model, switching, my, mx, mc,
mc_start, ma_start, mb_start, mu, mv, mw;
// run all experiments on the same seed
ranseed(-1);
mx = rann(cN, cQ * cS);
mc = unit(cQ, iR) * unit(iR, cS);
decl time = timer();
parallel
for (decl i = 0; i < cM; ++i)
{
my = mx * vec(mc) + 1 * rann(cN, 1);
model = new LowRank(my, mx, cQ, iR, cS);
switching = new MySwitching(iLineSearchMode);
vp = model.StartPar();
[vp, dfunc, retval] = switching.Estimate(model.LogLikAt, model.UpdatePar, model.CheckPar,
vp, <>, <>, 1e-12, 10000, -1);
mresult[i][] = dfunc ~ switching.GetIterInfo();
// decl abc = model.MapToArgs(vp);
// decl mc_end = abc[0] * abc[1]';
// println("C true=", "%6.0f", mc, "C max=", "%6.2f", mc_end, "%6.2f", mc_end_t);
// decsvd(mc, &mu, &mw); println("C sv:", mw);
// decsvd(mc_end, &mu, &mw); println("C max sv:", mw);
delete model;
delete switching;
}
print("LowRank ", Switching::GetLineSearchName(iLineSearchMode), " n=", cN, " q=s=", cQ,
" rank=", iR, " M=", cM);
MySwitching::Report(mresult, time);
return mresult;
}
///////////////////////////////////////////////////////////////////////
main()
{
format(1000);
decl als0 = {Switching::LS_NONE, Switching::LS_1STEP, Switching::LS_1STEP1, Switching::LS_SQS3, Switching::LS_SQS3G, Switching::LS_PARABOLIC, Switching::LS_BRENT, Switching::LS_POWELL, Switching::LS_QSTEP};
decl als1 = {Switching::LS_NONE, Switching::LS_1STEP, Switching::LS_1STEP1, Switching::LS_SQS3G, Switching::LS_PARABOLIC, Switching::LS_BRENT, Switching::LS_POWELL, Switching::LS_QSTEP};
foreach (decl ls in als0)
RunPoissonExp(ls, 5000);
foreach (decl ls in als1)
RunCauchyExp(ls, 1000, TRUE);
foreach (decl ls in als1)
RunParafacExp(ls, 100, 20, 5);
foreach (decl ls in als1)
RunLowRankExp(ls, 100, 200, 20, 5, 10);
exit(0);
// compare results for different methods
decl als2 = {Switching::LS_NONE, Switching::LS_1STEP, Switching::LS_SQS3G, Switching::LS_PARABOLIC, Switching::LS_POWELL, Switching::LS_QSTEP};
decl mlogdets = <>;
foreach (decl ls in als2)
{
mlogdets ~= RunPoissonExp(ls, 5000)[][0];
// mlogdets ~= RunCauchyExp(ls, 1000, TRUE)[][0];
// mlogdets ~= RunParafacExp(ls, 100, 20, 5)[][0];
// mlogdets ~= RunLowRankExp(ls, 100, 200, 20, 5, 10)[][0];
}
decl mgap = fabs(mlogdets - maxr(mlogdets));
// print the largest deviation from the maximum over all methods
println("Maximum of the likelihoods in deviation from the maximum of those achieved by each method:",
maxc(mgap));
println("Premature convergence, deviations:");
println((range(0, sizer(mgap) - 1)' ~ fabs(mgap))[vecindex(maxr(mgap) .> 1e-5)][] );
println("Premature convergence, likelihoods:");
println("%cf", {"%8.0f","%22.10g"}, (range(0, sizer(mgap) - 1)' ~ fabs(mlogdets))[vecindex(maxr(mgap) .> 1e-5)][] );
}