-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVec.py
274 lines (249 loc) · 13.1 KB
/
Vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/env python
#
# Simple vector class, implemented as a list with overridden:
# constructor([...])
# constructor(x,y,...)
# *
# *=
# /
# /=
# +
# +=
# -
# -=
# and methods:
# cross
# dot
# outer
# length2
# length
# normalized
#
import math
class Vec(list):
def __init__(self,*args):
if len(args) == 1: # e.g. Vec([x,y,z])
arg = [(float(x) if type(x)==int else x) for x in args[0]]
list.__init__(self,arg)
else: # e.g. Vec(x,y,z). This is just a convenience for more than 1 arg; to initialize a vector of length 1 you still have to say Vec([x])
list.__init__(self,[(float(x) if type(x)==int else x) for x in args])
def __mul__(self,rhs):
if isinstance(rhs,float):
return Vec([x*rhs for x in self])
else:
# Make Mat*Vec work.
# TODO: Is there a way to make this happen
# from within the Mat class,
# without Vec having to know about it??
return rhs.__rmul__(self)
def __rmul__(self,lhs):
return Vec([lhs*x for x in self])
def __div__(self,rhs):
return Vec([x/rhs for x in self])
def __add__(self, rhs):
return Vec([a+b for a,b in zip(self,rhs)]) # throws if differing sizes
def __sub__(self, rhs):
return Vec([a-b for a,b in zip(self,rhs)]) # throws if differing sizes
# need to override += and *=,
# otherwise we get list's which are wrong.
# (don't need to override -= or /=)
def __iadd__(self, rhs):
self = self + rhs
return self
def __imul__(self, rhs):
self = self + rhs
def __neg__(self):
return Vec([-x for x in self])
def __radd__(self, lhs):
# evil special case so sum() will work on a list of Vecs
if lhs == 0:
return self
return Vec([a+b for a,b in zip(lhs,self)]) # throws if differing sizes
def length2(self): # mostly for computing distance
return sum(length2(row) for row in self)
def perpDot(self):
assert len(self) == 2
return Vec(-self[1],self[0])
def cross(self,rhs):
if len(self) == 3 and len(rhs) == 3:
return Vec([self[1]*rhs[2]-self[2]*rhs[1],
self[2]*rhs[0]-self[0]*rhs[2],
self[0]*rhs[1]-self[1]*rhs[0]])
elif len(self) == 2 and len(rhs) == 2:
return self[0]*rhs[1] - self[1]*rhs[0]
else:
assert False
def outer(self,rhs):
return [x*rhs for x in self]
def dot(self,rhs):
return sum([a*b for a,b in zip(self,rhs)]) # throws if differing sizes
def length2(self):
return self.dot(self)
def length(self):
return math.sqrt(self.length2())
def normalized(self):
length = self.length()
assert length != 0.
return self / length
class Mat(list):
@staticmethod
def identity(nDims):
return Mat([[(1 if i==j else 0) for j in xrange(nDims)]
for i in xrange(nDims)])
def __init__(self,*args):
assert len(args) == 1
arg = [Vec(x) for x in args[0]]
list.__init__(self,arg)
def __mul__(self,rhs):
if isinstance(rhs,Mat):
return Mat([row*rhs for row in self])
elif isinstance(rhs,Vec):
return Vec([row.dot(rhs) for row in self])
elif isinstance(rhs,float):
return Mat([row*rhs for row in self])
else:
assert False
def __rmul__(self,lhs):
if isinstance(lhs,Vec):
return sum([x*row for x,row in zip(lhs,self)])
elif isinstance(lhs, float):
return Mat([lhs*row for row in self])
else:
assert False
def __add__(self, rhs):
return Mat([a+b for a,b in zip(self,rhs)]) # throws if differing sizes
# need to override +=, otherwise we get list's
def __iadd__(self, rhs):
self = self + rhs
return self
def __sub__(self, rhs):
return Mat([a-b for a,b in zip(self,rhs)]) # throws if differing sizes
# need to override -=, otherwise we get list's
def __isub__(self, rhs):
self = self - rhs
return self
def __div__(self,rhs):
if isinstance(rhs,float):
return Mat([row / rhs for row in self])
else:
assert False
def length2(self):
return sum([row.length2() for row in self])
def transposed(self):
return Mat(zip(*self))
# adjoint/adjugate
def adj(self):
if len(self) == 0:
return Mat([])
elif len(self) == 1:
return Mat([[1.]])
elif len(self) == 2:
return Mat([
[self[1][1],-self[0][1]],
[-self[1][0],self[0][0]],
])
elif len(self) == 3:
# from vec.h
return Mat([
[ (self[1][1]* self[2][2] + self[1][2]*-self[2][1]),
-(self[1][0]* self[2][2] + self[1][2]*-self[2][0]),
(self[1][0]* self[2][1] + self[1][1]*-self[2][0])],
[-(self[0][1]* self[2][2] + self[0][2]*-self[2][1]),
(self[0][0]* self[2][2] + self[0][2]*-self[2][0]),
-(self[0][0]* self[2][1] + self[0][1]*-self[2][0])],
[ (self[0][1]* self[1][2] + self[0][2]*-self[1][1]),
-(self[0][0]* self[1][2] + self[0][2]*-self[1][0]),
(self[0][0]* self[1][1] + self[0][1]*-self[1][0])]
]).transposed()
elif len(self) == 4:
# from vec.h
return Mat([
[(((self)[1])[1]* (((self)[2])[2]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[2])) + ((self)[1])[2]*-(((self)[2])[1]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[1])) + ((self)[1])[3]* (((self)[2])[1]* (((self)[3])[2]) + ((self)[2])[2]*-(((self)[3])[1]))),
-(((self)[1])[0]* (((self)[2])[2]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[2])) + ((self)[1])[2]*-(((self)[2])[0]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[0])) + ((self)[1])[3]* (((self)[2])[0]* (((self)[3])[2]) + ((self)[2])[2]*-(((self)[3])[0]))),
(((self)[1])[0]* (((self)[2])[1]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[1])) + ((self)[1])[1]*-(((self)[2])[0]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[0])) + ((self)[1])[3]* (((self)[2])[0]* (((self)[3])[1]) + ((self)[2])[1]*-(((self)[3])[0]))),
-(((self)[1])[0]* (((self)[2])[1]* (((self)[3])[2]) + ((self)[2])[2]*-(((self)[3])[1])) + ((self)[1])[1]*-(((self)[2])[0]* (((self)[3])[2]) + ((self)[2])[2]*-(((self)[3])[0])) + ((self)[1])[2]* (((self)[2])[0]* (((self)[3])[1]) + ((self)[2])[1]*-(((self)[3])[0])))],
[-(((self)[0])[1]* (((self)[2])[2]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[2])) + ((self)[0])[2]*-(((self)[2])[1]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[1])) + ((self)[0])[3]* (((self)[2])[1]* (((self)[3])[2]) + ((self)[2])[2]*-(((self)[3])[1]))),
(((self)[0])[0]* (((self)[2])[2]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[2])) + ((self)[0])[2]*-(((self)[2])[0]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[0])) + ((self)[0])[3]* (((self)[2])[0]* (((self)[3])[2]) + ((self)[2])[2]*-(((self)[3])[0]))),
-(((self)[0])[0]* (((self)[2])[1]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[1])) + ((self)[0])[1]*-(((self)[2])[0]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[0])) + ((self)[0])[3]* (((self)[2])[0]* (((self)[3])[1]) + ((self)[2])[1]*-(((self)[3])[0]))),
(((self)[0])[0]* (((self)[2])[1]* (((self)[3])[2]) + ((self)[2])[2]*-(((self)[3])[1])) + ((self)[0])[1]*-(((self)[2])[0]* (((self)[3])[2]) + ((self)[2])[2]*-(((self)[3])[0])) + ((self)[0])[2]* (((self)[2])[0]* (((self)[3])[1]) + ((self)[2])[1]*-(((self)[3])[0])))],
[(((self)[0])[1]* (((self)[1])[2]* (((self)[3])[3]) + ((self)[1])[3]*-(((self)[3])[2])) + ((self)[0])[2]*-(((self)[1])[1]* (((self)[3])[3]) + ((self)[1])[3]*-(((self)[3])[1])) + ((self)[0])[3]* (((self)[1])[1]* (((self)[3])[2]) + ((self)[1])[2]*-(((self)[3])[1]))),
-(((self)[0])[0]* (((self)[1])[2]* (((self)[3])[3]) + ((self)[1])[3]*-(((self)[3])[2])) + ((self)[0])[2]*-(((self)[1])[0]* (((self)[3])[3]) + ((self)[1])[3]*-(((self)[3])[0])) + ((self)[0])[3]* (((self)[1])[0]* (((self)[3])[2]) + ((self)[1])[2]*-(((self)[3])[0]))),
(((self)[0])[0]* (((self)[1])[1]* (((self)[3])[3]) + ((self)[1])[3]*-(((self)[3])[1])) + ((self)[0])[1]*-(((self)[1])[0]* (((self)[3])[3]) + ((self)[1])[3]*-(((self)[3])[0])) + ((self)[0])[3]* (((self)[1])[0]* (((self)[3])[1]) + ((self)[1])[1]*-(((self)[3])[0]))),
-(((self)[0])[0]* (((self)[1])[1]* (((self)[3])[2]) + ((self)[1])[2]*-(((self)[3])[1])) + ((self)[0])[1]*-(((self)[1])[0]* (((self)[3])[2]) + ((self)[1])[2]*-(((self)[3])[0])) + ((self)[0])[2]* (((self)[1])[0]* (((self)[3])[1]) + ((self)[1])[1]*-(((self)[3])[0])))],
[-(((self)[0])[1]* (((self)[1])[2]* (((self)[2])[3]) + ((self)[1])[3]*-(((self)[2])[2])) + ((self)[0])[2]*-(((self)[1])[1]* (((self)[2])[3]) + ((self)[1])[3]*-(((self)[2])[1])) + ((self)[0])[3]* (((self)[1])[1]* (((self)[2])[2]) + ((self)[1])[2]*-(((self)[2])[1]))),
(((self)[0])[0]* (((self)[1])[2]* (((self)[2])[3]) + ((self)[1])[3]*-(((self)[2])[2])) + ((self)[0])[2]*-(((self)[1])[0]* (((self)[2])[3]) + ((self)[1])[3]*-(((self)[2])[0])) + ((self)[0])[3]* (((self)[1])[0]* (((self)[2])[2]) + ((self)[1])[2]*-(((self)[2])[0]))),
-(((self)[0])[0]* (((self)[1])[1]* (((self)[2])[3]) + ((self)[1])[3]*-(((self)[2])[1])) + ((self)[0])[1]*-(((self)[1])[0]* (((self)[2])[3]) + ((self)[1])[3]*-(((self)[2])[0])) + ((self)[0])[3]* (((self)[1])[0]* (((self)[2])[1]) + ((self)[1])[1]*-(((self)[2])[0]))),
(((self)[0])[0]* (((self)[1])[1]* (((self)[2])[2]) + ((self)[1])[2]*-(((self)[2])[1])) + ((self)[0])[1]*-(((self)[1])[0]* (((self)[2])[2]) + ((self)[1])[2]*-(((self)[2])[0])) + ((self)[0])[2]* (((self)[1])[0]* (((self)[2])[1]) + ((self)[1])[1]*-(((self)[2])[0])))]
]).transposed()
else:
# Bogus! shouldn't be computing adjoint as inv times determinant!
# Is there a direct way using LU decomposition or something?
import numpy
import numpy.linalg
M = numpy.matrix(self)
#print "M = "+`M`
invM = numpy.linalg.inv(M)
#print "invM = "+`invM`
detM = numpy.linalg.det(M)
#print "detM = "+`detM`
adjM = invM * detM
return Mat(adjM.tolist())
# determinant
def det(self):
if len(self) == 1:
return self[0][0]
elif len(self) == 2:
return self[0][0]*self[1][1] - self[0][1]*self[1][0];
elif len(self) == 3:
return self[0].cross(self[1]).dot(self[2])
elif len(self) == 4:
# from vec.h
return (((((self)[0])[0]* (((self)[1])[1]* (((self)[2])[2]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[2])) + ((self)[1])[2]*-(((self)[2])[1]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[1])) + ((self)[1])[3]* (((self)[2])[1]* (((self)[3])[2]) + ((self)[2])[2]*-(((self)[3])[1]))) + ((self)[0])[1]*-(((self)[1])[0]* (((self)[2])[2]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[2])) + ((self)[1])[2]*-(((self)[2])[0]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[0])) + ((self)[1])[3]* (((self)[2])[0]* (((self)[3])[2]) + ((self)[2])[2]*-(((self)[3])[0]))) + ((self)[0])[2]* (((self)[1])[0]* (((self)[2])[1]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[1])) + ((self)[1])[1]*-(((self)[2])[0]* (((self)[3])[3]) + ((self)[2])[3]*-(((self)[3])[0])) + ((self)[1])[3]* (((self)[2])[0]* (((self)[3])[1]) + ((self)[2])[1]*-(((self)[3])[0]))) + ((self)[0])[3]*-(((self)[1])[0]* (((self)[2])[1]* (((self)[3])[2]) + ((self)[2])[2]*-(((self)[3])[1])) + ((self)[1])[1]*-(((self)[2])[0]* (((self)[3])[2]) + ((self)[2])[2]*-(((self)[3])[0])) + ((self)[1])[2]* (((self)[2])[0]* (((self)[3])[1]) + ((self)[2])[1]*-(((self)[3])[0]))))))
else:
import numpy
import numpy.linalg
M = numpy.matrix(self)
return numpy.linalg.det(M)
# inverse
def inverse(self):
return self.adj() / self.det()
# Little test program
if __name__ == '__main__':
def do(s):
answer = eval(s)
print s+' = '+`answer`
do('0')
do('1')
do('None')
do('True')
do('False')
do('2+3')
do('Vec(10,20)')
do('Vec([10,20])')
do('Vec([])')
do('Vec([1])')
do('Vec(100,200,300)')
do('Vec(100,200,300) * 2')
do('2 * Vec(100,200,300)')
do('Vec([10,20,30])')
do('Vec([10,20,30])')
do('Vec([10,20,30]) / 10')
do('Vec([10,20,30]) / 100')
do('Vec([10,20,30]) / 100.')
v = Vec(1,2,3)
v *= 2
do('v')
v[1] = 1000
do('v')
v[1] *= 2
do('v')
do('Vec(1,2,3) + Vec(4,5,6)')
do('Vec(1,2,3) + [4,5,6]')
do('Vec(1,2,3) - [4,5,6]')
do('Vec(1,2).cross([3,4])')
do('Vec(1,2,3).cross([10,100,1000])')
do('Vec(1,2,3).dot([10,20,30])')
do('Vec(1,2,3).cross([4,5,8]).dot([1,1,1])')
do('Vec(1,2).cross([4,5])')
do('-Vec(1,2)')
do('sum([Vec(1,2),[3,4]])')