forked from PaddlePaddle/PGL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sgc.py
271 lines (223 loc) · 8.88 KB
/
sgc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file implement the training process of SGC model with StaticGraphWrapper.
"""
import os
import argparse
import numpy as np
import random
import time
import pgl
from pgl import data_loader
from pgl.utils.logger import log
from pgl.utils import paddle_helper
import paddle.fluid as fluid
def load(name):
"""Load dataset."""
if name == 'cora':
dataset = data_loader.CoraDataset()
elif name == "pubmed":
dataset = data_loader.CitationDataset("pubmed", symmetry_edges=False)
elif name == "citeseer":
dataset = data_loader.CitationDataset("citeseer", symmetry_edges=False)
else:
raise ValueError(name + " dataset doesn't exists")
return dataset
def expand_data_dim(dataset):
"""Expand the dimension of data."""
train_index = dataset.train_index
train_label = np.expand_dims(dataset.y[train_index], -1)
train_index = np.expand_dims(train_index, -1)
val_index = dataset.val_index
val_label = np.expand_dims(dataset.y[val_index], -1)
val_index = np.expand_dims(val_index, -1)
test_index = dataset.test_index
test_label = np.expand_dims(dataset.y[test_index], -1)
test_index = np.expand_dims(test_index, -1)
return {
'train_index': train_index,
'train_label': train_label,
'val_index': val_index,
'val_label': val_label,
'test_index': test_index,
'test_label': test_label,
}
def MessagePassing(gw, feature, num_layers, norm=None):
"""Precomputing message passing.
"""
def send_src_copy(src_feat, dst_feat, edge_feat):
"""send_src_copy
"""
return src_feat["h"]
for _ in range(num_layers):
if norm is not None:
feature = feature * norm
msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])
feature = gw.recv(msg, "sum")
if norm is not None:
feature = feature * norm
return feature
def pre_gather(features, name_prefix, node_index_val):
"""Get features with respect to node index.
"""
node_index, init = paddle_helper.constant(
"%s_node_index" % (name_prefix), dtype='int32', value=node_index_val)
logits = fluid.layers.gather(features, node_index)
return logits, init
def calculate_loss(name, np_cached_h, node_label_val, num_classes, args):
"""Calculate loss function.
"""
initializer = []
const_cached_h, init = paddle_helper.constant(
"const_%s_cached_h" % name, dtype='float32', value=np_cached_h)
initializer.append(init)
node_label, init = paddle_helper.constant(
"%s_node_label" % (name), dtype='int64', value=node_label_val)
initializer.append(init)
output = fluid.layers.fc(const_cached_h,
size=num_classes,
bias_attr=args.bias,
name='fc')
loss, probs = fluid.layers.softmax_with_cross_entropy(
logits=output, label=node_label, return_softmax=True)
loss = fluid.layers.mean(loss)
acc = None
if name != 'train':
acc = fluid.layers.accuracy(input=probs, label=node_label, k=1)
return {
'loss': loss,
'acc': acc,
'probs': probs,
'initializer': initializer
}
def main(args):
""""Main function."""
dataset = load(args.dataset)
# normalize
indegree = dataset.graph.indegree()
norm = np.zeros_like(indegree, dtype="float32")
norm[indegree > 0] = np.power(indegree[indegree > 0], -0.5)
dataset.graph.node_feat["norm"] = np.expand_dims(norm, -1)
data = expand_data_dim(dataset)
place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
precompute_program = fluid.Program()
startup_program = fluid.Program()
train_program = fluid.Program()
val_program = train_program.clone(for_test=True)
test_program = train_program.clone(for_test=True)
# precompute message passing and gather
initializer = []
with fluid.program_guard(precompute_program, startup_program):
gw = pgl.graph_wrapper.StaticGraphWrapper(
name="graph", place=place, graph=dataset.graph)
cached_h = MessagePassing(
gw,
gw.node_feat["words"],
num_layers=args.num_layers,
norm=gw.node_feat['norm'])
train_cached_h, init = pre_gather(cached_h, 'train',
data['train_index'])
initializer.append(init)
val_cached_h, init = pre_gather(cached_h, 'val', data['val_index'])
initializer.append(init)
test_cached_h, init = pre_gather(cached_h, 'test', data['test_index'])
initializer.append(init)
exe = fluid.Executor(place)
gw.initialize(place)
for init in initializer:
init(place)
# get train features, val features and test features
np_train_cached_h, np_val_cached_h, np_test_cached_h = exe.run(
precompute_program,
feed={},
fetch_list=[train_cached_h, val_cached_h, test_cached_h],
return_numpy=True)
initializer = []
with fluid.program_guard(train_program, startup_program):
with fluid.unique_name.guard():
train_handle = calculate_loss('train', np_train_cached_h,
data['train_label'],
dataset.num_classes, args)
initializer += train_handle['initializer']
adam = fluid.optimizer.Adam(
learning_rate=args.lr,
regularization=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=args.weight_decay))
adam.minimize(train_handle['loss'])
with fluid.program_guard(val_program, startup_program):
with fluid.unique_name.guard():
val_handle = calculate_loss('val', np_val_cached_h,
data['val_label'], dataset.num_classes,
args)
initializer += val_handle['initializer']
with fluid.program_guard(test_program, startup_program):
with fluid.unique_name.guard():
test_handle = calculate_loss('test', np_test_cached_h,
data['test_label'],
dataset.num_classes, args)
initializer += test_handle['initializer']
exe.run(startup_program)
for init in initializer:
init(place)
dur = []
for epoch in range(args.epochs):
if epoch >= 3:
t0 = time.time()
train_loss_t = exe.run(train_program,
feed={},
fetch_list=[train_handle['loss']],
return_numpy=True)[0]
if epoch >= 3:
time_per_epoch = 1.0 * (time.time() - t0)
dur.append(time_per_epoch)
val_loss_t, val_acc_t = exe.run(
val_program,
feed={},
fetch_list=[val_handle['loss'], val_handle['acc']],
return_numpy=True)
log.info("Epoch %d " % epoch + "(%.5lf sec) " % np.mean(
dur) + "Train Loss: %f " % train_loss_t + "Val Loss: %f " %
val_loss_t + "Val Acc: %f " % val_acc_t)
test_loss_t, test_acc_t = exe.run(
test_program,
feed={},
fetch_list=[test_handle['loss'], test_handle['acc']],
return_numpy=True)
log.info("Test Accuracy: %f" % test_acc_t)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='SGC')
parser.add_argument(
"--dataset",
type=str,
default="cora",
help="dataset (cora, pubmed, citeseer)")
parser.add_argument("--use_cuda", action='store_true', help="use_cuda")
parser.add_argument(
"--seed", type=int, default=1667, help="global random seed")
parser.add_argument("--lr", type=float, default=0.2, help="learning rate")
parser.add_argument(
"--weight_decay",
type=float,
default=0.000005,
help="Weight for L2 loss")
parser.add_argument(
"--bias", action='store_true', default=False, help="flag to use bias")
parser.add_argument(
"--epochs", type=int, default=200, help="number of training epochs")
parser.add_argument(
"--num_layers", type=int, default=2, help="number of SGC layers")
args = parser.parse_args()
log.info(args)
main(args)