Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

NOutputGroups always be 0 #71

Open
dwbaron opened this issue Feb 25, 2020 · 9 comments
Open

NOutputGroups always be 0 #71

dwbaron opened this issue Feb 25, 2020 · 9 comments

Comments

@dwbaron
Copy link

dwbaron commented Feb 25, 2020

after I followed the example in the doc, there exist a starnge error
截屏2020-02-25下午5 57 29

@guiyang882
Copy link

I also find this error

@yunfei86
Copy link

also having this error

@anuragkyal
Copy link

anuragkyal commented Jul 2, 2020

same issue. Did you guys find a solution?

training code:

import xgboost as xgb

train_labels = train['click']
train_features = train.drop('click', axis=1)

test_labels = test['click']
test_features = test.drop('click', axis=1)

# convert to data matrix
train_matrix = xgb.DMatrix(train_features, train_labels)
test_matrix = xgb.DMatrix(test_features, test_labels)

# group by query
train_matrix.set_group(train_group)
test_matrix.set_group(test_group)

watchlist = [(train_matrix, 'train'), (test_matrix, 'eval')]

param = {
    'objective': 'rank:pairwise',
    'max_depth': 10,
    'eta': 0.1,
    'eval_metric': ['ndcg'],
    'colsample_bytree': 0.8,
    'subsample': 0.8,
    'tree_method': 'hist',
    'nthread': 64,
    'verbosity': 1
}
bst = xgb.train(param, train_matrix, 50, watchlist, early_stopping_rounds=10)
bst.save_model('xgboost.model')

prediction code:

package main

import (
	"fmt"

	"github.com/dmitryikh/leaves"
)

func main() {
	// loading model
	model, err := leaves.XGEnsembleFromFile("/Users/anuragkyal/Downloads/xgboost.model", false)
	if err != nil {
		panic(err)
	}
	fmt.Printf("Name: %s\n", model.Name())
	fmt.Printf("NFeatures: %d\n", model.NFeatures())
	fmt.Printf("NOutputGroups: %d\n", model.NOutputGroups())

	test_features := []float64{0.09688013136288999,  1.0,  3.0,  2.0,  0.0,  11.0,  2.0,  0.0,  0.0,  0.0,  3.0,  0.0,  1.0,  0.0,  0.0,  0.0,  1.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  1.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0,  0.0}
	fmt.Printf("feature size = %d\n", len(test_features))
	p := model.Predict(test_features, 50, make([]float64, 1))
	fmt.Printf("Prediction for %f\n", p)
}

Output:

Name: xgboost.gbtree
NFeatures: 175
NOutputGroups: 0
My feature size = 175
panic: runtime error: integer divide by zero

goroutine 1 [running]:
github.com/dmitryikh/leaves.(*xgEnsemble).NEstimators(...)
	/Users/anuragkyal/go/src/github.com/dmitryikh/leaves/xgensemble.go:22
github.com/dmitryikh/leaves.(*xgEnsemble).adjustNEstimators(0xc000090000, 0xa, 0x13)
	/Users/anuragkyal/go/src/github.com/dmitryikh/leaves/xgensemble.go:42 +0x77
github.com/dmitryikh/leaves.(*Ensemble).Predict(0xc00000c020, 0xc00007e000, 0xaf, 0xaf, 0xa, 0xc000484010, 0x1, 0x1, 0x0, 0x0)
	/Users/anuragkyal/go/src/github.com/dmitryikh/leaves/leaves.go:72 +0x114

@dmitryikh
Copy link
Owner

Hi all!
I assume that this is because of using objective function ('objective': 'rank:ndcg', as example) that isn't supported by leaves. Anyway leaves should be not panic and show the error on model loading stage.
I will try to fix it

@anuragkyal
Copy link

@dmitryikh got it, thanks for your response. Is any ranking objective supported with xgboost like rank:pariwise etc?

It would help if the list of objectives supported is added to the README.

@siyi8088
Copy link

my objective function is binary:logistic, but also have this error

@siyi8088
Copy link

Name: xgboost.gbtree
NFeatures: 31
NOutputGroups: 1
panic: runtime error: integer divide by zero

@qjebbs
Copy link

qjebbs commented Apr 7, 2021

same here with XGBClassifier().save_model()

Name: xgboost.gbtree
NFeatures: 8
NOutputGroups: 0
panic: runtime error: integer divide by zero

@kasiss-liu
Copy link

I set python module xgboost===0.90 instead of 1.0.0 . so this error disappeared

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

8 participants