-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlanguage_data.py
81 lines (58 loc) · 2.6 KB
/
language_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os
import pickle
import random
import sklearn
from sklearn import svm
from sklearn.ensemble import RandomForestClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.tree import DecisionTreeClassifier
from main_functions import get_text_from_url
from vectorize_language_data import vectorize
WIKI_LANGUAGES = ["fr", "en", "ru", "es", "de", "nl"]
def url_gen(lang):
return "https://%s.wikipedia.org/wiki/Special:Random" % lang
def random_from_lang(lang, n=500):
url = url_gen(lang)
for i in range(n):
text = get_text_from_url(url)
yield text
def paired_data_generator(n_per_lang=500):
for lang in WIKI_LANGUAGES:
for page in random_from_lang(lang, n_per_lang):
print("Loading page in language %s" % lang)
yield (1 if lang == "en" else 0), page
def paired_data(n_per_lang=100):
if os.path.isfile("wiki_language_data.pkl"):
print("Loading cached language data...")
result = pickle.load(open("wiki_language_data.pkl", "rb"))
print("Loaded cached language data")
return result
print("Loading language data...")
result = [item for item in paired_data_generator(n_per_lang)]
print("Loaded language data. Saving...")
pickle.dump(result, open("wiki_language_data.pkl", "wb"))
print("Saved language data")
return result
def split_paired_data(data, prop_testing=0.25):
random.shuffle(data)
num_testing = int(len(data) * prop_testing)
testing_data = data[:num_testing]
training_data = data[num_testing:]
return testing_data, training_data
def compute_input_output_split(data):
return [vectorize(input_val) for output, input_val in data], [output for output, input_val in data]
def data_input_output_split(data, prop_testing=0.25):
testing_data, training_data = split_paired_data(data, prop_testing)
return compute_input_output_split(testing_data), compute_input_output_split(training_data)
def train_model(training_vectors, training_labels):
model = RandomForestClassifier()
model.fit(training_vectors, training_labels)
pickle.dump(model, open("language_model.pkl", "wb"))
return model
def test_model(model, testing_vectors, testing_labels):
predicted_labels = model.predict(testing_vectors)
print("F-0.5 score of:", sklearn.metrics.fbeta_score(predicted_labels, testing_labels, 0.5))
if __name__ == "__main__":
(testing_vectors, testing_labels), (training_vectors, training_labels) = data_input_output_split(paired_data())
model = train_model(training_vectors, training_labels)
test_model(model, testing_vectors, testing_labels)