forked from yumingj/Talk-to-Edit
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquantitative_results.py
207 lines (169 loc) · 6.84 KB
/
quantitative_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import argparse
import glob
import logging
import cv2
import numpy as np
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from facenet_pytorch import InceptionResnetV1
from PIL import Image
from models.archs.attribute_predictor_arch import resnet50
from models.utils import output_to_label
from utils.logger import get_root_logger
from utils.options import dict2str
attr_predictor_eval_ckpt = './download/pretrained_models/eval_predictor.pth.tar'
def parse_args():
"""Parses arguments."""
parser = argparse.ArgumentParser(
description='Continuous image editing via field function')
# inference
parser.add_argument(
'--attribute',
type=str,
required=True,
help='[Bangs, Eyeglasses, No_Beard, Smiling, Young]')
# input and output directories
parser.add_argument(
'--work_dir',
required=True,
type=str,
metavar='PATH',
help='path to save checkpoint and log files.')
parser.add_argument(
'--image_dir',
required=True,
type=str,
metavar='PATH',
help='path to save checkpoint and log files.')
parser.add_argument('--image_num', type=int, required=True)
parser.add_argument('--debug', default=0, type=int)
return parser.parse_args()
def get_edited_images_list(img_dir, img_idx):
return_img_list = []
img_path_list = glob.glob(f'{img_dir}/{img_idx:03d}_*.png')
start_img_path = glob.glob(f'{img_dir}/{img_idx:03d}_num_edits_0_*.png')
assert len(start_img_path) == 1
return_img_list.append(start_img_path[0])
num_edits = len(img_path_list) - 1
if num_edits > 0:
for edit_idx in range(1, num_edits + 1):
img_path_edit_list = glob.glob(
f'{img_dir}/{img_idx:03d}_num_edits_{edit_idx}_*.png')
assert len(img_path_edit_list) == 1
return_img_list.append(img_path_edit_list[0])
return return_img_list
def load_face_image(img_path):
image = cv2.imread(img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = image.transpose((2, 0, 1))
image = image[np.newaxis, :, :, :]
image = image.astype(np.float32, copy=False)
image -= 127.5
image /= 128.0
image = torch.from_numpy(image).to(torch.device('cuda'))
return image
def load_image_predictor(img_path,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])):
image = Image.open(img_path).convert('RGB')
image = transform(image)
image = image.to(torch.device('cuda')).unsqueeze(0)
return image
def predictor_score(predictor_output, gt_label, target_attr_idx,
criterion_predictor):
num_attr = len(predictor_output)
loss_avg = 0
count = 0
for attr_idx in range(num_attr):
if attr_idx == target_attr_idx:
continue
loss_attr = criterion_predictor(
predictor_output[attr_idx],
gt_label[attr_idx].unsqueeze(0).to(torch.device('cuda')))
loss_avg += loss_attr
count += 1
loss_avg = loss_avg / count
return loss_avg
def compute_num_metrics(image_dir, image_num, target_attr_idx, logger):
# use different face model and predictor model from training phase
# define face recognition model
resnet = InceptionResnetV1(pretrained='vggface2').eval().to(
torch.device('cuda'))
# define attribute predictor model
predictor = resnet50(attr_file='./configs/attributes_5.json', )
predictor = predictor.to(torch.device('cuda'))
checkpoint = torch.load(attr_predictor_eval_ckpt)
predictor.load_state_dict(checkpoint['state_dict'], strict=True)
predictor.eval()
criterion_predictor = nn.CrossEntropyLoss(reduction='mean')
face_distance_dataset = 0
predictor_score_dataset = 0
count = 0
for img_idx in range(image_num):
edit_image_list = get_edited_images_list(image_dir, img_idx)
num_edits = len(edit_image_list) - 1
face_distance_img = 0
predictor_score_img = 0
if num_edits > 0:
# face recognition feature
source_img = load_face_image(edit_image_list[0])
source_img_feat = resnet(source_img)
# attribute label for predictor
source_img_predictor = load_image_predictor(edit_image_list[0])
with torch.no_grad():
source_predictor_output = predictor(source_img_predictor)
source_label, score = output_to_label(source_predictor_output)
for edit_idx in range(1, num_edits + 1):
edited_img = load_face_image(edit_image_list[edit_idx])
edited_img_feat = resnet(edited_img)
temp_face_dist = torch.norm(source_img_feat -
edited_img_feat).item()
face_distance_img += temp_face_dist
# attribute predictor score
edited_img_predictor = load_image_predictor(
edit_image_list[edit_idx])
with torch.no_grad():
edited_predictor_output = predictor(edited_img_predictor)
temp_predictor_score_img = predictor_score(
edited_predictor_output, source_label, target_attr_idx,
criterion_predictor)
predictor_score_img += temp_predictor_score_img
face_distance_img = face_distance_img / num_edits
face_distance_dataset += face_distance_img
predictor_score_img = predictor_score_img / num_edits
predictor_score_dataset += predictor_score_img
count += 1
logger.info(
f'{img_idx:03d}: Identity Preservation: {face_distance_img: .4f}, Attribute Preservation: {predictor_score_img: .4f}.'
)
else:
logger.info(f'{img_idx:03d}: no available edits.')
face_distance_dataset = face_distance_dataset / count
predictor_score_dataset = predictor_score_dataset / count
logger.info(
f'Avg: {face_distance_dataset: .4f}, {predictor_score_dataset: .4f}.')
return face_distance_dataset, predictor_score_dataset
def main():
"""Main function."""
args = parse_args()
args.attr_dict = {
'Bangs': 0,
'Eyeglasses': 1,
'No_Beard': 2,
'Smiling': 3,
'Young': 4
}
logger = get_root_logger(
logger_name='base',
log_level=logging.INFO,
log_file=f'{args.work_dir}/quantitative_results.txt')
logger.info(dict2str(args.__dict__))
compute_num_metrics(args.image_dir, args.image_num,
args.attr_dict[args.attribute], logger)
if __name__ == '__main__':
main()