From dfeb94ddcd2e23c0070d2847c2c10f0e14fd91e3 Mon Sep 17 00:00:00 2001 From: Danny Date: Wed, 2 Oct 2024 08:22:47 -0400 Subject: [PATCH] DriveParameters -> Model, which should naturally include the Hamiltonian --- docs/examples/transmon.ipynb | 69 +++++++----------- docs/floquet.md | 4 +- floquet/__init__.py | 2 +- floquet/amplitude_converters.py | 8 +-- floquet/displaced_state.py | 42 ++++------- floquet/floquet.py | 86 +++++++---------------- floquet/{drive_parameters.py => model.py} | 37 ++++++++-- tests/test_floquet.py | 25 +++---- 8 files changed, 116 insertions(+), 157 deletions(-) rename floquet/{drive_parameters.py => model.py} (59%) diff --git a/docs/examples/transmon.ipynb b/docs/examples/transmon.ipynb index b379f74..755c37d 100644 --- a/docs/examples/transmon.ipynb +++ b/docs/examples/transmon.ipynb @@ -14,19 +14,10 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 9, "id": "68ebc2fd", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/danielweiss/anaconda3/envs/floquet_user_v2/lib/python3.10/site-packages/qutip/__init__.py:66: UserWarning: The new version of Cython, (>= 3.0.0) is not supported.\n", - " warnings.warn(\n" - ] - } - ], + "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", @@ -53,7 +44,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 2, "id": "fde5cfeb", "metadata": {}, "outputs": [], @@ -84,9 +75,7 @@ "# resulting array has shape (a,w), where a is amplitude and w is frequency\n", "amp_linspace = chi_to_amp.amplitudes_for_omega_d(chi_ac_linspace)\n", "\n", - "drive_parameters = ft.DriveParameters(\n", - " omega_d_values=omega_d_linspace, drive_amplitudes=amp_linspace\n", - ")\n", + "model = ft.Model(H0, H1, omega_d_values=omega_d_linspace, drive_amplitudes=amp_linspace)\n", "\n", "options = ft.Options(\n", " fit_range_fraction=0.5, # split the fit into segments based on this fraction\n", @@ -101,7 +90,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 3, "id": "7fb27b941602401d91542211134fc71a", "metadata": { "collapsed": false @@ -112,7 +101,7 @@ "output_type": "stream", "text": [ "Running floquet simulation with parameters: \n", - "H0: Quantum object: dims = [[20], [20]], shape = (20, 20), type = oper, isherm = True\n", + "model: H0: Quantum object: dims = [[20], [20]], shape = (20, 20), type = oper, isherm = True\n", "Qobj data =\n", "[[ 0. 0. 0. 0. 0.\n", " 0. 0. 0. 0. 0.\n", @@ -296,7 +285,7 @@ " -4.15723586e-06 1.61713689e-05 1.82434498e-06 -1.37823087e-04\n", " -2.29414446e-07 -1.73673366e-03 -1.84015509e-08 -3.00739904e-02\n", " -1.06712552e-09 -6.78374395e-01 4.73396912e-11 9.91381802e+00]]\n", - "drive_parameters: omega_d_values: [47.1238898 47.2558895 47.38788919 47.51988888 47.65188857 47.78388826\n", + "omega_d_values: [47.1238898 47.2558895 47.38788919 47.51988888 47.65188857 47.78388826\n", " 47.91588795 48.04788764 48.17988733 48.31188703 48.44388672 48.57588641\n", " 48.7078861 48.83988579 48.97188548 49.10388517 49.23588487 49.36788456\n", " 49.49988425 49.63188394 49.76388363 49.89588332 50.02788301 50.1598827\n", @@ -339,17 +328,13 @@ "save_floquet_modes: True\n", "calculating for amp_range_idx=0\n", "calculating for amp_range_idx=1\n", - "finished in 0.614204998811086 minutes\n" + "finished in 0.5944376826286316 minutes\n" ] } ], "source": [ "floquet_analysis = ft.FloquetAnalysis(\n", - " H0,\n", - " H1,\n", - " drive_parameters=drive_parameters,\n", - " state_indices=state_indices,\n", - " options=options,\n", + " model, state_indices=state_indices, options=options\n", ")\n", "data_vals = floquet_analysis.run(filepath=filepath)" ] @@ -364,7 +349,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 4, "id": "acae54e37e7d407bbb7b55eff062a284", "metadata": { "collapsed": false @@ -378,7 +363,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 5, "id": "10185d26023b46108eb7d9f57d49d2b3", "metadata": { "collapsed": false @@ -386,9 +371,9 @@ "outputs": [ { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-10-01T22:13:21.771509\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNTcyLjAwMDYyNSAyMzQuMDI1NjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nNVXS3PbNhC+41fg6By0wi7exziu3eTSuta0B08OqqLI9shxJTf1TH99FyApgg9R6jEHzpALYL9vsU/Or9b/PK7Wv91cyg93Yt5+rV4Fyid+NlLJJ37eJMobfjZC8dezsJ5AKeXI8ue2/CRtQJFNr1ve3Pl8EOKrmL9nNa987EYIpyBqo72VxkDgPaxZedAd2baUkYpgdBK2Z1tZBtjJgVpjHBiJzoBDuV/LP+Q3OX9PiQfbyc9b4iO7N7BjebIWh/pWz7XKvF6pTa8sn39EefUib8Wt3DUYiu8x4SgINRJLhCPwsWt8IULQ2XZxyW54EzuREGaJjdVAJpkdwDOiuFyI+TVKJLn4mt2z+CLu5YUH+05+lotP4qeFuBUZW6AJoG0XtJQdR0V2ZAwewznIMQyhSXtwPWeXsuPQRAbInQUdwMQhtCYHEbvQpew4tEYN1pwJHUegDTrAnpdL2XFooxy4M/wcx/xslQXj+5nVyiZgIwGqsyxGBaqELl1mFGDlWN6lc8okNUhgHSptkUuCnCGE/GaTxvk1pc02gVzs38nFkzDgyStO/8DYBMapmFTmzcyn2jqvt1qrPVYbMsMLygsYwHpD2aBKLhvdLijn+J6pXrjPC5ZJUQNaLdxUmhAcaVuTr1Z+blbIR4quBfk3L3gIvnfic17gC9txPVBoc+E4vEFtYqok1zS7Wj8tf/9+t/z2Ovvlz+3j7vt69vK83iyrEjPUoNmxzN7qmK06re2vx7pa1YFTlDoHRLnUc3EtJKNpwjFmcvnnyHLW24mo6QVNHxbJc+R0cGvRaGnwwEFDKapOgY5kSdlCAijTQa1F0+aS0pxTJ6CxmyRJwyzpwsjkOd2cro8HjhYXrUbW3M8NbHNjmSPIZaLk0GOsQ2tVL2DQqKxxIRxNmh87B1YPh7BNbfZ/93u+yDd5Ly3XjHRD7B4lv3BQWIXRsdFGD6YBvuxBuy5k7Qwi7srWT/JT0fa7Kkemn7GhhhUOh6Ln8aGI9545U3V2NgqOa1XJjnqMqcalTScPnWsaOaHNx6qQzm4tC3wVfr/mAIicYNagqprBMFSbgMfj4cI5pGzQht0WTYOVAwfLwFnu9y9v+8fNw99N3NRjaDniqnrEFZa7vqp9rVMI8b1wYQulaFuKiDu6ybL25EFWT70np03utqEaKHmaDjKp0i6hRWMbqz5Sxb8YLJvo2pSEfAB0McSKugXdF48OljwINucNaK/5gvlqO8VNTRa3evhoeSA3fE8xYugSKeQnmCCX4ai1MqkqxkkqNE3FcK8IkS+zR6WVn6LCvjBRK68Mej1JRU9TCfxqYvS6R6WVn6LCnlRWq+i9Cm6SipmkUkdph8YhcicpELvQYe5VU/Cdtpur4eFHqJsAo1nH/d0czbrJRGxPTibnADTnK5dw8R8CSR6mCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTA2NgplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxOSAwIG9iago8PCAvTGVuZ3RoIDE3OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9jzuORDEIBHOfgiMYaD4+z1utJvDeP11gNJO4S2BD2bfSJok6fDOFHPrhxX4G/5aeGLoLrkPGoGAlwyFPoWdZKrnxDPDtk4aoThM8yMIIG2QCUt/VQQgpd7W2HyXdMfksrmlNd7F4ad01dvcrdddriQk5sgT5HNJAVVX0Q/GuQWpJJqFug1sIJQzU2voW0icNI9TUb7I/sEu7kk93UKQ5E3qnJk8+X4s2+v0HNNs+pgplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXQovTGVuZ3RoIDE1OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw90LkNwzAMBdCeU/wFBPCmNY+AIIWzfxvKjlPpQfg8JDJmDFHBhzQdGTgpFUO5WsPtoTaljpbMA863GO4TkgIvhsh9LjrqQkdYEb4biGUrdyvllkGzEBLQ6nS3WGTSt+WdCclfXerTwSyuUa2aGLlXsJ40hCe8C4ZYL5Q/LPLJN0/yyucl7rK5N7GoTYfJTlbg/x+L3vT6AmX6NjcKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0KL0xlbmd0aCAxODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVA7DkMxCNs5hS9QKfzJeZ5UdWjvv5bw2iHCiTGxIWHDgxUfyhqgC6WIgmTgohKoC1gcZgreAbdsQrYOepP8ubLuZXCuFmv3sLVS+4QhBKJ5ykW65q5uYNvQSmgPuchaetCbTG/OfCEYznVLfa8DwlZPbp9j9PwV45QRmeMmGt9O0+rnNDvj4bJ8UmXyL2b2rDpjc5bgLFPbkei9ll6KtmrzJOoMvudhreH/e7zoRc8vZQI/kAplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXQovTGVuZ3RoIDE2NiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1kMENAyAMA/9M4QWQEpIQmKdS1Ue7/7cOpa8zDrIDbSvCE582NY56t9gLHkeNfZVPgw4tFRs74VOwhJhIwaN5DtDyZQgGiRYeLWSes46DIWAc7ZElwmgvwgtlK/qsYtnoyjg2dTXGBhm3p+uvvysX9XXIifyUcYWesOTGRt/mAAsKtCydttZ9y/u4YXGV+oRUfxyo+x3kX9z/erdXe34BzHU7lAplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9MZW5ndGggMTY2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2QSw4DMQhD9zmFjxAw5HOeqaoupvff1mSkbmIH5ORBmKGDqSMGkaPjZS1i6Br4tmC5hXDpdISFNHG16LrNCW5F5wblS69G38f5UkUPepryoY5bgmvBtoPcsKXuyZgXwt34iIUjY8o5/07hGH5qAtqEj4E0IfSOZH1AagZ9RyHXLNHHUeEqfSoCyRQgS1d1opxQs7L57EH++q/hbp/2/gGTBTgmCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9HQ1dYRFYrRGVqYVZ1U2Fucy1PYmxpcXVlIC9GaXJzdENoYXIgMAovTGFzdENoYXIgMjU1IC9Gb250RGVzY3JpcHRvciAxNiAwIFIgL1N1YnR5cGUgL1R5cGUzCi9OYW1lIC9HQ1dYRFYrRGVqYVZ1U2Fucy1PYmxpcXVlIC9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0KL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0NoYXJQcm9jcyAxOCAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZyAvRGlmZmVyZW5jZXMgWyA4MCAvUCAxMTQgL3IgXSA+PgovV2lkdGhzIDE1IDAgUiA+PgplbmRvYmoKMTYgMCBvYmoKPDwgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250TmFtZSAvR0NXWERWK0RlamFWdVNhbnMtT2JsaXF1ZSAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvQXNjZW50IDkyOSAvRGVzY2VudCAtMjM2IC9DYXBIZWlnaHQgMAovWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMzUwID4+CmVuZG9iagoxNSAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxOCAwIG9iago8PCAvUCAxOSAwIFIgL3IgMjMgMCBSID4+CmVuZG9iagoyOCAwIG9iago8PCAvTGVuZ3RoIDI0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUluxDAMu/sV/MAAlqzFeU+KQQ/t/68lHRTtwRAjS1zi7sREFl62UNdCh+PDRl4Jm4Hvg9ac+Bqx4j/aRqSVP1RbIBMxUSR0UTca90g3vArRfqSCV6r3WPMRdyvNWzp2sb/3wbTmkSqrQjzk2BzZSFrXRNHxPbTec0N0yiCBPjchB0Rpjl6FpL/2w3VtNLu1NrMnqoNHpoTySbMamtMpZshsqMdtKlYyCjeqjIr7VEZaD/I2zjKAk+OEMlpPdqwmovzUJ5eQFxNxwi47OxZiEwsbh7QflT6x/Hzrzfibaa2lkHFBIjTFpd9nvMfneP8AlU9cJgplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9MZW5ndGggNzkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzc1UjBQsLQAEmamJgrmRpYKKYZcQD6IlctlaGkOZuWAWSbGBkCWqakpEgsiC9MLYcHkYLSxiTnUBAQLJAe2NgdmWw5XBlcaANaUHAwKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvTGVuZ3RoIDMwNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvTGVuZ3RoIDc2Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEXNwQ3AIAwDwH+m8AiQ1IQsVPUB+39LWqr+TrJli/eAGTElpaEYwnDUUlIWqOxLjQr1J/UfRu7sVfaPFnuD6kvfw5BLzhvFDRX/CmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0xlbmd0aCA3MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwztjRQMFCwMFPQNTQ2VDCyNFYwNzNQSDHkAgqBWLlcMLEcMMvMEsQyNDdDYumaGUJlkVgg43K4YAbnwMzL4crgSgMAHokWlQplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9MZW5ndGggNjkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicM7Y0UDBQsDRX0DU0NlQwNjBRMDczUEgx5IIxc8EssGwOF0wdhGUGYhgZmiCxzIDGgSXhDJAZOXDTcrgyuNIA+qkWRQplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggMjMyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVRSW7EMAy7+xX8wADW7rwnxaCH9v/XUsoUCEAltrglYmMjAi8x+DmI3PiSNaMmfmdyV/wsT4VHwq3gSRSBl+FedoLLG8ZlPw4zH7yXVs6kxpMMyEU2PTwRMtglEDowuwZ12Gbaib4h4bMjUs1GltPXEvTSKgTKU7bf6YISbav6c/usC2372hNOdnvqSeUTiOeWrMBl4xWTxVgGPVG5SzF9kOpsoSehvCifg2w+aohElyhn4InBwSjQDuy57WfiVSFoXd2nbWOoRkrH078NTU2SCPlECWe2NO4W/n/Pvb7X+w9OIVQRCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0xlbmd0aCAzOTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVJLbsVACNvnFFyg0vCbz3lSVd28+29rQ1KpKryJMcYwfcqQueVLXRJxhcm3Xq5bPKZ8LltamXmIu4uNJT623JfuIbZddC6xOB1H8gsynSpEqM2q0aH4QpaFB5BO8KELwn05/uMvgMHXsA244T0yQbAk5ilCxm5RGZoSQRFh55EVqKRQn1nC31Hu6/cyBWpvjKULYxz0CbQFQm1IxALqQABE7JRUrZCOZyQTvxXdZ2IcYOfRsgGuGVRElnvsx4ipzqiMvETEPk9N+iiWTC1Wxm5TGV/8lIzUfHQFKqk08pTy0FWz0AtYiXkS9jn8SPjn1mwhhjpu1vKJ5R8zxTISzmBLOWChl+NH4NtZdRGuHbm4znSBH5XWcEy0637I9U/+dNtazXW8cgiiQOVNQfC7Dq5GscTEMj6djSl6oiywGpq8RjPBYRAR1vfDyAMa/XK8EDSnayK0WCKbtWJEjYpscz29BNZM78U51sMTwmzvndahsjMzKiGC2rqGautAdrO+83C2nz8z6KJtCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFJigMwDLvnFfpAIV6TvKdDmUPn/9fKDoU5BAmvkpOWmFgLDzGEHyw9+JEhczf9G36i2btZepLJ2f+Y5yJTUfhSqC5iQl2IG8+hEfA9oWsSWbG98Tkso5lzvgcfhbgEM6EBY31JMrmo5pUhE04MdRwOWqTCuGtiw+Ja0TyN3G77RmZlJoQNj2RC3BiAiCDrArIYLJQ2NhMyWc4D7Q3JDVpg16kbUYuCK5TWCXSiVsSqzOCz5tZ2N0Mt8uCoffH6aFaXYIXRS/VYeF+FPpipmXbukkJ64U07IsweCqQyOy0rtXvE6m6B+j/LUvD9yff4Ha8PzfxcnAplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9MZW5ndGggOTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY3BEcAgCAT/VEEJCgraTyaTh/b/jRAyfGDnDu6EBQu2eUYfBZUmXhVYB0pj3FCPQL3hci3J3AUPcCd/2tBUnJbTd2mRSVUp3KQSef8OZyaQqHnRY533C2P7IzwKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvTGVuZ3RoIDMyMiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UbttxTAM7DUFFzAgfiXN4yBIkbd/mzvaqUjTvB9VXjKlXC51ySpZYfKlQ3WKpnyeZqb8DvWQ45ge2SG6U9aWexgWlol5Sh2xmiz3cAs2vgCaEnML8fcI8CuAUcBEoG7x9w+6WRJAGhT8FOiaq5ZYYgINi4Wt2RXiVt0pWLir+HYkuQcJcjFZ6FMORYopt8B8GSzZkVqc63JZCv9ufQIaYYU47LOLROB5wANMJP5kgGzPPlvs6upFNnaGOOnQgIuAm80kAUFTOKs+uGH7arvm55koJzg51q+iMb4NTuZLUt5XucfPoEHe+DM8Z3eOUA6aUAj03QIgh93ARoQ+tc/ALgO2Sbt3Y0r5nGQpvgQ2CvaoUx3K8GLszFZv2PzH6MpmUWyQlfXR6Q7K3KATYh5vZKFbsrb7Nw+zff8BXxl7ZAplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9MZW5ndGggODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0xlbmd0aCA1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHK4MrDQDhtA2YCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0xlbmd0aCA3MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILoyuNIAmJoTAwplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9MZW5ndGggNTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzY2VzAAQl1LIwVjINvcyFIhxZDLyNQEzMzlggnmcFkYg1XlcBlAaZiiHK4MrjQA+4QOHwplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9MZW5ndGggMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDCAwxRDrjQAHeYDUgplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9MZW5ndGggMzQwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSOW4EMQzr/Qp9IIBu2+/ZIEiR/L8NqdkUA3F0UpQ7WlR2y4eFVLXsdPm0ldoSN+R3ZYXECcmrEu1ShkiovFYh1e+ZMq+3NWcEyFKlwuSk5HHJgj/DpacLx/m2sa/lyB2PHlgVI6FEwDLFxOgals7usGZbfpZpwI94hJwr1i3HWAVSG9047Yr3oXktsgaIvZmWigodVokWfkHxoEeNffYYVFgg0e0cSXCMiVCRgHaB2kgMOXssdlEf9DMoMRPo2htF3EGBJZKYOcW6dPTf+NCxoP7YjDe/OirpW1pZY9I+G+2Uxiwy6XpY9HTz1seDCzTvovzn1QwSNGWNksYHrdo5hqKZUVZ4t0OTDc0xxyHzDp7DGQlK+jwUv48lEx2UyN8ODaF/Xx6jjJw23gLmoj9tFQcO4rPDXrmBFUoXa5L3AalM6IHp/6/xtb7X1x8d7YDGCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0xlbmd0aCAyNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNDYgMCBvYmoKPDwgL0xlbmd0aCA3NiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9jDsOgDAMQ/ecwkdofiQHQoiB3n+lKbSL/fQk28XRYFqRArfAyeQ+qdNyzyQ7fBCbIeRXG1q1rsrSmgyLmoy/Dd/dTdcLpjgXwAplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8IC9MZW5ndGggMjE1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9UeXBlIC9Gb250IC9CYXNlRm9udCAvQk1RUURWK0RlamFWdVNhbnMgL0ZpcnN0Q2hhciAwIC9MYXN0Q2hhciAyNTUKL0ZvbnREZXNjcmlwdG9yIDI1IDAgUiAvU3VidHlwZSAvVHlwZTMgL05hbWUgL0JNUVFEVitEZWphVnVTYW5zCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0KL0NoYXJQcm9jcyAyNyAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZwovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDYgL3BlcmlvZCAvc2xhc2ggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciAvZml2ZSA1NSAvc2V2ZW4KL2VpZ2h0IC9uaW5lIDcxIC9HIC9IIDkxIC9icmFja2V0bGVmdCA5MyAvYnJhY2tldHJpZ2h0IDk3IC9hIDk5IC9jIDEyMiAveiBdCj4+Ci9XaWR0aHMgMjQgMCBSID4+CmVuZG9iagoyNSAwIG9iago8PCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0ZvbnROYW1lIC9CTVFRRFYrRGVqYVZ1U2FucyAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvQXNjZW50IDkyOSAvRGVzY2VudCAtMjM2IC9DYXBIZWlnaHQgMAovWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMzQyID4+CmVuZG9iagoyNCAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyNyAwIG9iago8PCAvRyAyOCAwIFIgL0ggMjkgMCBSIC9hIDMwIDAgUiAvYnJhY2tldGxlZnQgMzIgMCBSIC9icmFja2V0cmlnaHQgMzMgMCBSCi9jIDM0IDAgUiAvZWlnaHQgMzUgMCBSIC9maXZlIDM2IDAgUiAvZm91ciAzNyAwIFIgL25pbmUgMzggMCBSIC9vbmUgMzkgMCBSCi9wZXJpb2QgNDAgMCBSIC9zZXZlbiA0MSAwIFIgL3NsYXNoIDQyIDAgUiAvc3BhY2UgNDMgMCBSIC90aHJlZSA0NCAwIFIKL3R3byA0NSAwIFIgL3ogNDYgMCBSIC96ZXJvIDQ3IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjIgMTcgMCBSIC9GMSAyNiAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0kxIDEzIDAgUiAvSTIgMTQgMCBSIC9GMi1EZWphVnVTYW5zLU9ibGlxdWUtY2hpIDIwIDAgUgovRjItRGVqYVZ1U2Fucy1PYmxpcXVlLW9tZWdhIDIxIDAgUiAvRjItRGVqYVZ1U2Fucy1PYmxpcXVlLXBpIDIyIDAgUgovRjEtRGVqYVZ1U2Fucy1hcnJvd3JpZ2h0IDMxIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCAxMjAgL0hlaWdodCA1OQovQ29sb3JTcGFjZSBbIC9JbmRleGVkIC9EZXZpY2VSR0IgMTE1CigIMGv3+//1+f70+f7y9/3x9/3v9fzu9fzs8/vr8/vo8frl7/nk7/ni7fjh7fgIQYXe6/fc6fbb6fbZ5/XY5/XV5fTT4/PP4fLN3/HM3/HK3fDJ3fDH2+/G2+/D2e6+1+y81+u10+mrz+Wqz+WmzeOhy+IIM2+dyeCax+CAudp7t9l4tdhysddtr9Znq9RjqdNepdFao89TncxQm8tHlcg/j8Q9jcM5icE3h8A1hb8zg74nd7gldbcfb7MZZ60UYagLVZ8IRYsIOHf2+v7z+P3w9vzv9vzt9Pvs9Pvq8vrp8vrn8Pnm8Pnk7vjj7vjh7Pfg7Pfd6vba6PXU5PPR4vLO4PHI3O/F2u7E2u7A2O2/2Oy31Oq21Omy0uit0Oas0OanzuSjzOOgyuGXxt8ITJZvsNZdpNBIlshAkMUygr4sfLsqerkbaq8VYqkTYKcSXqYQXFykXHJYoQxWoAhSnCkKXQovQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMSAvQ29sdW1ucyAxMjAgL0JpdHNQZXJDb21wb25lbnQgOCA+PgovTGVuZ3RoIDQ4IDAgUiA+PgpzdHJlYW0KeJzF2Gdb2zAQAOBY8khMShmlpLR00kn33ksnxxnQmADdk9Hd0vb/P0/l2Emss8lwHOc+EIwTvZF0OglnlFbc816YEje4/8pU9wcjYEz/m82ZlTphUqMT7lWmfb3i3YXYMG3CjSYErNduHi4bK0cRbBAZLnp352LDrdabMM+fW6joZy9SGQYqw+Dd1WPDraAeTDXz3fkla+spginIMCXy9x4UZlTNHrxT08e3EUw0GWZUSSj8HhAozjxZMYqvKJFglkOwmjisO79WbV4ABB9gEqzYScHMhylfuvo8p31GsPIAwfXIVo53dUJT5MNiks2ND6b2WkXwBIJ/dyV6jCZMIPfywhhf5gi2EPwsGbB9KbJr9fs4z2YRDESGeeTH+wg05gK2JjOTuj5D5TYJlWH/9lZs2EAwo9ryt/2GdQ3Bbk0Nwv6AxO/xTghWzcV5m5cAwboMMxKb9IKjazHW2WMfS1zV5NKlTMlweF30GfiLuzvj7OUKhzLKrj8I1mKCe3f5uxhra+rnMoevCM4zGa71gU338J5Gdv11LDARrCL4Rx9wTyHG2rxSNwBQdlEEl4cA2ydeFIFylNZEhv1TjzUo1/6NgV7YyAF5g2Aqw9HLqe91HWiGUT71xQRSQo1oMpzA4cONwHGRETV/Kq8Sivq0x4NbYDKyGYShdMPRKEFn19sIHrR0eRE4p4pJLp6sW5TNyX2yPbhVseKfqYMRLICihBSO6JShtPaTq3XmMZUkImiISXYWbWCogjDWgDeb19uJwJJAoPqoLA5deK9uwK2Fi7eXQPQ0/RG7DIPs/TEB30LNZaRGB02utxEw1c84aqjHkAm/dYCIWI6MaGuzmvi3De1PycJR34VAbcESuSWvmLmhw2KSzbuG2I7kA1nCQx0JU+NhTsBoPSHYz65kColPEO1T1d2PZRnBg+6IkTLUHRde6wQXhgLn1yGU79FDPVCsY5jYl7RQw8NPLtEb/thyYamGpAEzeG8TPNa7wNcThalTpT3CyQYp7WvAQTwVmPHTobROB4bNrnBij5zkVue1bnDs0tXxgMoqxkiGWkxydTSwAoe80tU+W6UEkx1cM1OCmYOzNiVY4XiLTw7uvB4oPjmn1WOGH3OkBSuLo4Lxw/DU4BEVkHCkB6Muj6zH/wHvZIzICmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKODY3CmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvSW1hZ2UgL1dpZHRoIDQwIC9IZWlnaHQgMjQwCi9Db2xvclNwYWNlIFsgL0luZGV4ZWQgL0RldmljZVJHQiAyMzgKKAhAgvf7//X5/vT5/t/r9/L3/fH3/e71/AhQm+vz++rz+3y32ujx+ufx+uXv+eTv+eLt+OHt+AhBhN7r99zp9tvp9tnn9djn9dbl9NXl9NPj89Lj89Dh8s/h8ghLk8zf8V+m0crd8Mnd8Mfb78bb78LZ7sHZ7Qgybr3X7LzX67jV6rTT6bPT6I/C3q/R567R5whGi6rP5anP5aXN4+Pu+aHL4qDL4ggzcAhRnN/s95nH4JXF35HD3o3B3Yq/3Ye93Ag0cQhMlXm12Xe12XSz2HGx122v12ar1GSp02Gn0mCn0gg1c12l0QhHjVuj0Fihz9zq9lKdzE+by02ZykmXyUaVyESTx0GRxgg2dD2NxDuLwjmJwTeHwDWFvzODvjGBvS9/vAhChSt7ulwpebknd7gldbcjc7ZcclehCDd2Hm2yHGuwG2mvGWetGGWsv9jtFmOqFWGpEl2mEFukDlmiCE2WC1WfXG5TnggxbQg4dwhIjvX6/vP4/vL4/fD2/e/2/O30/Oz0++ny+ufw+ubw+ePu+ODs+Ag5eQhDh9ro9tno9dfm9dbm9NTk9J/K4dDi8s7g8s3g8cve8cre8Mjc8Mfc78Pa7gg6er7Y7BxqsLrW67nW6rfU6rXU6bLS6IG6263Q5qvQ5qjO5KbO5C19u6TM46PM4wg7fJ3K4ZrI4JfG35TE35LE3n+52ghJkIzA3dPk84m+3IW83IS82zyMwwg8fX242nq22XW02HKy2G+w1whEiGyu1mqu1mis1T+PxWWq1GOo083f8Qg9f1xcpNBaos9XoM5WoM5Tns1RnMxOmstLmMpKmMlIlshFlMdCksYITpg+jsQISpE6isI4iME2hsA0hL8ygr4ufrwsfLoqerkmdrgkdLcicrYgcLQfbrMdbLEIRYoaaK4ZZq0XZKsVYqkUYKgSXqYRXFylD1qjDliiDFagXG5UnglSnQgwayFxtSkKXQovQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMSAvQ29sdW1ucyA0MCAvQml0c1BlckNvbXBvbmVudCA4ID4+Ci9MZW5ndGggNDkgMCBSID4+CnN0cmVhbQp4nI3K4wIYBACAwS8s28u212px2baNLSzbtm3bNrfVaq1aWrb1DL3C3e/rX9TxqMVQq6DWRm2G2hk1DHUC6jzUdaj7UM+g3kKxmVD7oM5HvYT6AbU8agvUiahHUeNR86LWQR2D+hA1BWoI6h/Ucai/Ucei/kIdhPoTdTTqD9RRqN9RR6J+Q/2KOgL1C+pw1M+ow1A/oQ5F/Yg6BHUD6mDU96jhqO9Q36L+Q32DOhD1NeoA1Feo/VH7ob5E7Yv6AnU3agJqb9ReqM9Re6I+Q+2B+hS1O+oT1G6oj1G7op5G7YL6CPUaaifUB6gdUeNQO6DeR22PGot6D7Ud6l3UtqgxqG1Q76DeRo1GbYUahdoSNRK1OWp+1KaoTVBvoDZGvY7aCPUq6hXUy6gNUS+iNkC9gFof9TxqPdS6qOdQU6OeRT2Cug31FOpJ1FDUE6i1UI+h1kQtg1oD9TDqIdTqqAdRq6EeQN2PuhS1Mmow6l7UPahBqLtQd6JWRK2AugN1O2o51LKoW1FLo5ZC3YK6GbUk6ibUjaglUIujrkeNQC2KWgR1LWph1EKoa1BXoxZELYC6CnUlaj7Um6grUJej5kHNjboMNRdqTtTjqEtQA1FzoC5GXYSaHTUb6kLUBahZUbOgtkbNjJoUtSrqXNSMqBlQ56BWQk2Pmg51Nuos1LSoaVBnoqZCTYk6A3U6anLk8TTUqajJUANQp6BORk2Cmhh1Emoi9D/lXl4ACmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKNTUzCmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iago1MCAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My45LjIsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My45LjIpCi9DcmVhdGlvbkRhdGUgKEQ6MjAyNDEwMDEyMjEzMjEtMDQnMDAnKSA+PgplbmRvYmoKeHJlZgowIDUxCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDE0ODAxIDAwMDAwIG4gCjAwMDAwMTEzNzAgMDAwMDAgbiAKMDAwMDAxMTQxMyAwMDAwMCBuIAowMDAwMDExNTEyIDAwMDAwIG4gCjAwMDAwMTE1MzMgMDAwMDAgbiAKMDAwMDAxMTU1NCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDQgMDAwMDAgbiAKMDAwMDAwMTUwNiAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDE0ODUgMDAwMDAgbiAKMDAwMDAxMTczMyAwMDAwMCBuIAowMDAwMDEzMjM4IDAwMDAwIG4gCjAwMDAwMDM0NzYgMDAwMDAgbiAKMDAwMDAwMzI2MSAwMDAwMCBuIAowMDAwMDAyOTI1IDAwMDAwIG4gCjAwMDAwMDQ1MjkgMDAwMDAgbiAKMDAwMDAwMTUyNiAwMDAwMCBuIAowMDAwMDAxNzc3IDAwMDAwIG4gCjAwMDAwMDIwNjkgMDAwMDAgbiAKMDAwMDAwMjM4NiAwMDAwMCBuIAowMDAwMDAyNjg2IDAwMDAwIG4gCjAwMDAwMTAwNDMgMDAwMDAgbiAKMDAwMDAwOTgzNiAwMDAwMCBuIAowMDAwMDA5MzgyIDAwMDAwIG4gCjAwMDAwMTEwOTYgMDAwMDAgbiAKMDAwMDAwNDU3MSAwMDAwMCBuIAowMDAwMDA0ODkxIDAwMDAwIG4gCjAwMDAwMDUwNDIgMDAwMDAgbiAKMDAwMDAwNTQyMiAwMDAwMCBuIAowMDAwMDA1NjMxIDAwMDAwIG4gCjAwMDAwMDU3NzYgMDAwMDAgbiAKMDAwMDAwNTkxNyAwMDAwMCBuIAowMDAwMDA2MjIyIDAwMDAwIG4gCjAwMDAwMDY2OTAgMDAwMDAgbiAKMDAwMDAwNzAxMiAwMDAwMCBuIAowMDAwMDA3MTc4IDAwMDAwIG4gCjAwMDAwMDc1NzMgMDAwMDAgbiAKMDAwMDAwNzcyOCAwMDAwMCBuIAowMDAwMDA3ODUxIDAwMDAwIG4gCjAwMDAwMDc5OTMgMDAwMDAgbiAKMDAwMDAwODExOSAwMDAwMCBuIAowMDAwMDA4MjA5IDAwMDAwIG4gCjAwMDAwMDg2MjIgMDAwMDAgbiAKMDAwMDAwODk0NiAwMDAwMCBuIAowMDAwMDA5MDk0IDAwMDAwIG4gCjAwMDAwMTMyMTggMDAwMDAgbiAKMDAwMDAxNDc4MSAwMDAwMCBuIAowMDAwMDE0ODYxIDAwMDAwIG4gCnRyYWlsZXIKPDwgL1NpemUgNTEgL1Jvb3QgMSAwIFIgL0luZm8gNTAgMCBSID4+CnN0YXJ0eHJlZgoxNTAxOAolJUVPRgo=" + "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNTcyLjAwMDYyNSAyMzQuMDI1NjI1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nNVXS3PbNhC+41fg6By0wi7exziu3eTSuta0B08OqqLI9shxJTf1TH99FyApgg9R6jEHzpALYL9vsU/Or9b/PK7Wv91cyg93Yt5+rV4Fyid+NlLJJ37eJMobfjZC8dezsJ5AKeXI8ue2/CRtQJFNr1ve3Pl8EOKrmL9nNa987EYIpyBqo72VxkDgPaxZedAd2baUkYpgdBK2Z1tZBtjJgVpjHBiJzoBDuV/LP+Q3OX9PiQfbyc9b4iO7N7BjebIWh/pWz7XKvF6pTa8sn39EefUib8Wt3DUYiu8x4SgINRJLhCPwsWt8IULQ2XZxyW54EzuREGaJjdVAJpkdwDOiuFyI+TVKJLn4mt2z+CLu5YUH+05+lotP4qeFuBUZW6AJoG0XtJQdR0V2ZAwewznIMQyhSXtwPWeXsuPQRAbInQUdwMQhtCYHEbvQpew4tEYN1pwJHUegDTrAnpdL2XFooxy4M/wcx/xslQXj+5nVyiZgIwGqsyxGBaqELl1mFGDlWN6lc8okNUhgHSptkUuCnCGE/GaTxvk1pc02gVzs38nFkzDgyStO/8DYBMapmFTmzcyn2jqvt1qrPVYbMsMLygsYwHpD2aBKLhvdLijn+J6pXrjPC5ZJUQNaLdxUmhAcaVuTr1Z+blbIR4quBfk3L3gIvnfic17gC9txPVBoc+E4vEFtYqok1zS7Wj8tf/9+t/z2Ovvlz+3j7vt69vK83iyrEjPUoNmxzN7qmK06re2vx7pa1YFTlDoHRLnUc3EtJKNpwjFmcvnnyHLW24mo6QVNHxbJc+R0cGvRaGnwwEFDKapOgY5kSdlCAijTQa1F0+aS0pxTJ6CxmyRJwyzpwsjkOd2cro8HjhYXrUbW3M8NbHNjmSPIZaLk0GOsQ2tVL2DQqKxxIRxNmh87B1YPh7BNbfZ/93u+yDd5Ly3XjHRD7B4lv3BQWIXRsdFGD6YBvuxBuy5k7Qwi7srWT/JT0fa7Kkemn7GhhhUOh6Ln8aGI9545U3V2NgqOa1XJjnqMqcalTScPnWsaOaHNx6qQzm4tC3wVfr/mAIicYNagqprBMFSbgMfj4cI5pGzQht0WTYOVAwfLwFnu9y9v+8fNw99N3NRjaDniqnrEFZa7vqp9rVMI8b1wYQulaFuKiDu6ybL25EFWT70np03utqEaKHmaDjKp0i6hRWMbqz5Sxb8YLJvo2pSEfAB0McSKugXdF48OljwINucNaK/5gvlqO8VNTRa3evhoeSA3fE8xYugSKeQnmCCX4ai1MqkqxkkqNE3FcK8IkS+zR6WVn6LCvjBRK68Mej1JRU9TCfxqYvS6R6WVn6LCnlRWq+i9Cm6SipmkUkdph8YhcicpELvQYe5VU/Cdtpur4eFHqJsAo1nH/d0czbrJRGxPTibnADTnK5dw8R8CSR6mCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTA2NgplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxOSAwIG9iago8PCAvTGVuZ3RoIDE3OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9jzuORDEIBHOfgiMYaD4+z1utJvDeP11gNJO4S2BD2bfSJok6fDOFHPrhxX4G/5aeGLoLrkPGoGAlwyFPoWdZKrnxDPDtk4aoThM8yMIIG2QCUt/VQQgpd7W2HyXdMfksrmlNd7F4ad01dvcrdddriQk5sgT5HNJAVVX0Q/GuQWpJJqFug1sIJQzU2voW0icNI9TUb7I/sEu7kk93UKQ5E3qnJk8+X4s2+v0HNNs+pgplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXQovTGVuZ3RoIDE1OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw90LkNwzAMBdCeU/wFBPCmNY+AIIWzfxvKjlPpQfg8JDJmDFHBhzQdGTgpFUO5WsPtoTaljpbMA863GO4TkgIvhsh9LjrqQkdYEb4biGUrdyvllkGzEBLQ6nS3WGTSt+WdCclfXerTwSyuUa2aGLlXsJ40hCe8C4ZYL5Q/LPLJN0/yyucl7rK5N7GoTYfJTlbg/x+L3vT6AmX6NjcKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0KL0xlbmd0aCAxODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVA7DkMxCNs5hS9QKfzJeZ5UdWjvv5bw2iHCiTGxIWHDgxUfyhqgC6WIgmTgohKoC1gcZgreAbdsQrYOepP8ubLuZXCuFmv3sLVS+4QhBKJ5ykW65q5uYNvQSmgPuchaetCbTG/OfCEYznVLfa8DwlZPbp9j9PwV45QRmeMmGt9O0+rnNDvj4bJ8UmXyL2b2rDpjc5bgLFPbkei9ll6KtmrzJOoMvudhreH/e7zoRc8vZQI/kAplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXQovTGVuZ3RoIDE2NiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1kMENAyAMA/9M4QWQEpIQmKdS1Ue7/7cOpa8zDrIDbSvCE582NY56t9gLHkeNfZVPgw4tFRs74VOwhJhIwaN5DtDyZQgGiRYeLWSes46DIWAc7ZElwmgvwgtlK/qsYtnoyjg2dTXGBhm3p+uvvysX9XXIifyUcYWesOTGRt/mAAsKtCydttZ9y/u4YXGV+oRUfxyo+x3kX9z/erdXe34BzHU7lAplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9MZW5ndGggMTY2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2QSw4DMQhD9zmFjxAw5HOeqaoupvff1mSkbmIH5ORBmKGDqSMGkaPjZS1i6Br4tmC5hXDpdISFNHG16LrNCW5F5wblS69G38f5UkUPepryoY5bgmvBtoPcsKXuyZgXwt34iIUjY8o5/07hGH5qAtqEj4E0IfSOZH1AagZ9RyHXLNHHUeEqfSoCyRQgS1d1opxQs7L57EH++q/hbp/2/gGTBTgmCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9HQ1dYRFYrRGVqYVZ1U2Fucy1PYmxpcXVlIC9GaXJzdENoYXIgMAovTGFzdENoYXIgMjU1IC9Gb250RGVzY3JpcHRvciAxNiAwIFIgL1N1YnR5cGUgL1R5cGUzCi9OYW1lIC9HQ1dYRFYrRGVqYVZ1U2Fucy1PYmxpcXVlIC9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0KL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0NoYXJQcm9jcyAxOCAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZyAvRGlmZmVyZW5jZXMgWyA4MCAvUCAxMTQgL3IgXSA+PgovV2lkdGhzIDE1IDAgUiA+PgplbmRvYmoKMTYgMCBvYmoKPDwgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250TmFtZSAvR0NXWERWK0RlamFWdVNhbnMtT2JsaXF1ZSAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvQXNjZW50IDkyOSAvRGVzY2VudCAtMjM2IC9DYXBIZWlnaHQgMAovWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMzUwID4+CmVuZG9iagoxNSAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxOCAwIG9iago8PCAvUCAxOSAwIFIgL3IgMjMgMCBSID4+CmVuZG9iagoyOCAwIG9iago8PCAvTGVuZ3RoIDI0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUluxDAMu/sV/MAAlqzFeU+KQQ/t/68lHRTtwRAjS1zi7sREFl62UNdCh+PDRl4Jm4Hvg9ac+Bqx4j/aRqSVP1RbIBMxUSR0UTca90g3vArRfqSCV6r3WPMRdyvNWzp2sb/3wbTmkSqrQjzk2BzZSFrXRNHxPbTec0N0yiCBPjchB0Rpjl6FpL/2w3VtNLu1NrMnqoNHpoTySbMamtMpZshsqMdtKlYyCjeqjIr7VEZaD/I2zjKAk+OEMlpPdqwmovzUJ5eQFxNxwi47OxZiEwsbh7QflT6x/Hzrzfibaa2lkHFBIjTFpd9nvMfneP8AlU9cJgplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9MZW5ndGggNzkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzc1UjBQsLQAEmamJgrmRpYKKYZcQD6IlctlaGkOZuWAWSbGBkCWqakpEgsiC9MLYcHkYLSxiTnUBAQLJAe2NgdmWw5XBlcaANaUHAwKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvTGVuZ3RoIDMwNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvTGVuZ3RoIDc2Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEXNwQ3AIAwDwH+m8AiQ1IQsVPUB+39LWqr+TrJli/eAGTElpaEYwnDUUlIWqOxLjQr1J/UfRu7sVfaPFnuD6kvfw5BLzhvFDRX/CmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0xlbmd0aCA3MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwztjRQMFCwMFPQNTQ2VDCyNFYwNzNQSDHkAgqBWLlcMLEcMMvMEsQyNDdDYumaGUJlkVgg43K4YAbnwMzL4crgSgMAHokWlQplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9MZW5ndGggNjkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicM7Y0UDBQsDRX0DU0NlQwNjBRMDczUEgx5IIxc8EssGwOF0wdhGUGYhgZmiCxzIDGgSXhDJAZOXDTcrgyuNIA+qkWRQplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggMjMyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVRSW7EMAy7+xX8wADW7rwnxaCH9v/XUsoUCEAltrglYmMjAi8x+DmI3PiSNaMmfmdyV/wsT4VHwq3gSRSBl+FedoLLG8ZlPw4zH7yXVs6kxpMMyEU2PTwRMtglEDowuwZ12Gbaib4h4bMjUs1GltPXEvTSKgTKU7bf6YISbav6c/usC2372hNOdnvqSeUTiOeWrMBl4xWTxVgGPVG5SzF9kOpsoSehvCifg2w+aohElyhn4InBwSjQDuy57WfiVSFoXd2nbWOoRkrH078NTU2SCPlECWe2NO4W/n/Pvb7X+w9OIVQRCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0xlbmd0aCAzOTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVJLbsVACNvnFFyg0vCbz3lSVd28+29rQ1KpKryJMcYwfcqQueVLXRJxhcm3Xq5bPKZ8LltamXmIu4uNJT623JfuIbZddC6xOB1H8gsynSpEqM2q0aH4QpaFB5BO8KELwn05/uMvgMHXsA244T0yQbAk5ilCxm5RGZoSQRFh55EVqKRQn1nC31Hu6/cyBWpvjKULYxz0CbQFQm1IxALqQABE7JRUrZCOZyQTvxXdZ2IcYOfRsgGuGVRElnvsx4ipzqiMvETEPk9N+iiWTC1Wxm5TGV/8lIzUfHQFKqk08pTy0FWz0AtYiXkS9jn8SPjn1mwhhjpu1vKJ5R8zxTISzmBLOWChl+NH4NtZdRGuHbm4znSBH5XWcEy0637I9U/+dNtazXW8cgiiQOVNQfC7Dq5GscTEMj6djSl6oiywGpq8RjPBYRAR1vfDyAMa/XK8EDSnayK0WCKbtWJEjYpscz29BNZM78U51sMTwmzvndahsjMzKiGC2rqGautAdrO+83C2nz8z6KJtCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFJigMwDLvnFfpAIV6TvKdDmUPn/9fKDoU5BAmvkpOWmFgLDzGEHyw9+JEhczf9G36i2btZepLJ2f+Y5yJTUfhSqC5iQl2IG8+hEfA9oWsSWbG98Tkso5lzvgcfhbgEM6EBY31JMrmo5pUhE04MdRwOWqTCuGtiw+Ja0TyN3G77RmZlJoQNj2RC3BiAiCDrArIYLJQ2NhMyWc4D7Q3JDVpg16kbUYuCK5TWCXSiVsSqzOCz5tZ2N0Mt8uCoffH6aFaXYIXRS/VYeF+FPpipmXbukkJ64U07IsweCqQyOy0rtXvE6m6B+j/LUvD9yff4Ha8PzfxcnAplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9MZW5ndGggOTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY3BEcAgCAT/VEEJCgraTyaTh/b/jRAyfGDnDu6EBQu2eUYfBZUmXhVYB0pj3FCPQL3hci3J3AUPcCd/2tBUnJbTd2mRSVUp3KQSef8OZyaQqHnRY533C2P7IzwKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvTGVuZ3RoIDMyMiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UbttxTAM7DUFFzAgfiXN4yBIkbd/mzvaqUjTvB9VXjKlXC51ySpZYfKlQ3WKpnyeZqb8DvWQ45ge2SG6U9aWexgWlol5Sh2xmiz3cAs2vgCaEnML8fcI8CuAUcBEoG7x9w+6WRJAGhT8FOiaq5ZYYgINi4Wt2RXiVt0pWLir+HYkuQcJcjFZ6FMORYopt8B8GSzZkVqc63JZCv9ufQIaYYU47LOLROB5wANMJP5kgGzPPlvs6upFNnaGOOnQgIuAm80kAUFTOKs+uGH7arvm55koJzg51q+iMb4NTuZLUt5XucfPoEHe+DM8Z3eOUA6aUAj03QIgh93ARoQ+tc/ALgO2Sbt3Y0r5nGQpvgQ2CvaoUx3K8GLszFZv2PzH6MpmUWyQlfXR6Q7K3KATYh5vZKFbsrb7Nw+zff8BXxl7ZAplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9MZW5ndGggODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0xlbmd0aCA1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHK4MrDQDhtA2YCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0xlbmd0aCA3MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMzZTMFCwMAISpqaGCuZGlgophlxAPoiVywUTywGzzCzMgSwjC5CWHC5DC2MwbWJspGBmYgZkWSAxILoyuNIAmJoTAwplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9MZW5ndGggNTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzY2VzAAQl1LIwVjINvcyFIhxZDLyNQEzMzlggnmcFkYg1XlcBlAaZiiHK4MrjQA+4QOHwplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9MZW5ndGggMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDCAwxRDrjQAHeYDUgplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9MZW5ndGggMzQwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSOW4EMQzr/Qp9IIBu2+/ZIEiR/L8NqdkUA3F0UpQ7WlR2y4eFVLXsdPm0ldoSN+R3ZYXECcmrEu1ShkiovFYh1e+ZMq+3NWcEyFKlwuSk5HHJgj/DpacLx/m2sa/lyB2PHlgVI6FEwDLFxOgals7usGZbfpZpwI94hJwr1i3HWAVSG9047Yr3oXktsgaIvZmWigodVokWfkHxoEeNffYYVFgg0e0cSXCMiVCRgHaB2kgMOXssdlEf9DMoMRPo2htF3EGBJZKYOcW6dPTf+NCxoP7YjDe/OirpW1pZY9I+G+2Uxiwy6XpY9HTz1seDCzTvovzn1QwSNGWNksYHrdo5hqKZUVZ4t0OTDc0xxyHzDp7DGQlK+jwUv48lEx2UyN8ODaF/Xx6jjJw23gLmoj9tFQcO4rPDXrmBFUoXa5L3AalM6IHp/6/xtb7X1x8d7YDGCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0xlbmd0aCAyNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNDYgMCBvYmoKPDwgL0xlbmd0aCA3NiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9jDsOgDAMQ/ecwkdofiQHQoiB3n+lKbSL/fQk28XRYFqRArfAyeQ+qdNyzyQ7fBCbIeRXG1q1rsrSmgyLmoy/Dd/dTdcLpjgXwAplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8IC9MZW5ndGggMjE1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9UeXBlIC9Gb250IC9CYXNlRm9udCAvQk1RUURWK0RlamFWdVNhbnMgL0ZpcnN0Q2hhciAwIC9MYXN0Q2hhciAyNTUKL0ZvbnREZXNjcmlwdG9yIDI1IDAgUiAvU3VidHlwZSAvVHlwZTMgL05hbWUgL0JNUVFEVitEZWphVnVTYW5zCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0KL0NoYXJQcm9jcyAyNyAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZwovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDYgL3BlcmlvZCAvc2xhc2ggL3plcm8gL29uZSAvdHdvIC90aHJlZSAvZm91ciAvZml2ZSA1NSAvc2V2ZW4KL2VpZ2h0IC9uaW5lIDcxIC9HIC9IIDkxIC9icmFja2V0bGVmdCA5MyAvYnJhY2tldHJpZ2h0IDk3IC9hIDk5IC9jIDEyMiAveiBdCj4+Ci9XaWR0aHMgMjQgMCBSID4+CmVuZG9iagoyNSAwIG9iago8PCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0ZvbnROYW1lIC9CTVFRRFYrRGVqYVZ1U2FucyAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvQXNjZW50IDkyOSAvRGVzY2VudCAtMjM2IC9DYXBIZWlnaHQgMAovWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMzQyID4+CmVuZG9iagoyNCAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyNyAwIG9iago8PCAvRyAyOCAwIFIgL0ggMjkgMCBSIC9hIDMwIDAgUiAvYnJhY2tldGxlZnQgMzIgMCBSIC9icmFja2V0cmlnaHQgMzMgMCBSCi9jIDM0IDAgUiAvZWlnaHQgMzUgMCBSIC9maXZlIDM2IDAgUiAvZm91ciAzNyAwIFIgL25pbmUgMzggMCBSIC9vbmUgMzkgMCBSCi9wZXJpb2QgNDAgMCBSIC9zZXZlbiA0MSAwIFIgL3NsYXNoIDQyIDAgUiAvc3BhY2UgNDMgMCBSIC90aHJlZSA0NCAwIFIKL3R3byA0NSAwIFIgL3ogNDYgMCBSIC96ZXJvIDQ3IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjIgMTcgMCBSIC9GMSAyNiAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0kxIDEzIDAgUiAvSTIgMTQgMCBSIC9GMi1EZWphVnVTYW5zLU9ibGlxdWUtY2hpIDIwIDAgUgovRjItRGVqYVZ1U2Fucy1PYmxpcXVlLW9tZWdhIDIxIDAgUiAvRjItRGVqYVZ1U2Fucy1PYmxpcXVlLXBpIDIyIDAgUgovRjEtRGVqYVZ1U2Fucy1hcnJvd3JpZ2h0IDMxIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0ltYWdlIC9XaWR0aCAxMjAgL0hlaWdodCA1OQovQ29sb3JTcGFjZSBbIC9JbmRleGVkIC9EZXZpY2VSR0IgMTE1CigIMGv3+//1+f70+f7y9/3x9/3v9fzu9fzs8/vr8/vo8frl7/nk7/ni7fjh7fgIQYXe6/fc6fbb6fbZ5/XY5/XV5fTT4/PP4fLN3/HM3/HK3fDJ3fDH2+/G2+/D2e6+1+y81+u10+mrz+Wqz+WmzeOhy+IIM2+dyeCax+CAudp7t9l4tdhysddtr9Znq9RjqdNepdFao89TncxQm8tHlcg/j8Q9jcM5icE3h8A1hb8zg74nd7gldbcfb7MZZ60UYagLVZ8IRYsIOHf2+v7z+P3w9vzv9vzt9Pvs9Pvq8vrp8vrn8Pnm8Pnk7vjj7vjh7Pfg7Pfd6vba6PXU5PPR4vLO4PHI3O/F2u7E2u7A2O2/2Oy31Oq21Omy0uit0Oas0OanzuSjzOOgyuGXxt8ITJZvsNZdpNBIlshAkMUygr4sfLsqerkbaq8VYqkTYKcSXqYQXFykXHJYoQxWoAhSnCkKXQovQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMSAvQ29sdW1ucyAxMjAgL0JpdHNQZXJDb21wb25lbnQgOCA+PgovTGVuZ3RoIDQ4IDAgUiA+PgpzdHJlYW0KeJzF2Gdb2zAQAOBY8khMShmlpLR00kn33ksnxxnQmADdk9Hd0vb/P0/l2Emss8lwHOc+EIwTvZF0OglnlFbc816YEje4/8pU9wcjYEz/m82ZlTphUqMT7lWmfb3i3YXYMG3CjSYErNduHi4bK0cRbBAZLnp352LDrdabMM+fW6joZy9SGQYqw+Dd1WPDraAeTDXz3fkla+spginIMCXy9x4UZlTNHrxT08e3EUw0GWZUSSj8HhAozjxZMYqvKJFglkOwmjisO79WbV4ABB9gEqzYScHMhylfuvo8p31GsPIAwfXIVo53dUJT5MNiks2ND6b2WkXwBIJ/dyV6jCZMIPfywhhf5gi2EPwsGbB9KbJr9fs4z2YRDESGeeTH+wg05gK2JjOTuj5D5TYJlWH/9lZs2EAwo9ryt/2GdQ3Bbk0Nwv6AxO/xTghWzcV5m5cAwboMMxKb9IKjazHW2WMfS1zV5NKlTMlweF30GfiLuzvj7OUKhzLKrj8I1mKCe3f5uxhra+rnMoevCM4zGa71gU338J5Gdv11LDARrCL4Rx9wTyHG2rxSNwBQdlEEl4cA2ydeFIFylNZEhv1TjzUo1/6NgV7YyAF5g2Aqw9HLqe91HWiGUT71xQRSQo1oMpzA4cONwHGRETV/Kq8Sivq0x4NbYDKyGYShdMPRKEFn19sIHrR0eRE4p4pJLp6sW5TNyX2yPbhVseKfqYMRLICihBSO6JShtPaTq3XmMZUkImiISXYWbWCogjDWgDeb19uJwJJAoPqoLA5deK9uwK2Fi7eXQPQ0/RG7DIPs/TEB30LNZaRGB02utxEw1c84aqjHkAm/dYCIWI6MaGuzmvi3De1PycJR34VAbcESuSWvmLmhw2KSzbuG2I7kA1nCQx0JU+NhTsBoPSHYz65kColPEO1T1d2PZRnBg+6IkTLUHRde6wQXhgLn1yGU79FDPVCsY5jYl7RQw8NPLtEb/thyYamGpAEzeG8TPNa7wNcThalTpT3CyQYp7WvAQTwVmPHTobROB4bNrnBij5zkVue1bnDs0tXxgMoqxkiGWkxydTSwAoe80tU+W6UEkx1cM1OCmYOzNiVY4XiLTw7uvB4oPjmn1WOGH3OkBSuLo4Lxw/DU4BEVkHCkB6Muj6zH/wHvZIzICmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKODY3CmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvSW1hZ2UgL1dpZHRoIDQwIC9IZWlnaHQgMjQwCi9Db2xvclNwYWNlIFsgL0luZGV4ZWQgL0RldmljZVJHQiAyMzgKKAhAgvf7//X5/vT5/t/r9/L3/fH3/e71/AhQm+vz++rz+3y32ujx+ufx+uXv+eTv+eLt+OHt+AhBhN7r99zp9tvp9tnn9djn9dbl9NXl9NPj89Lj89Dh8s/h8ghLk8zf8V+m0crd8Mnd8Mfb78bb78LZ7sHZ7Qgybr3X7LzX67jV6rTT6bPT6I/C3q/R567R5whGi6rP5anP5aXN4+Pu+aHL4qDL4ggzcAhRnN/s95nH4JXF35HD3o3B3Yq/3Ye93Ag0cQhMlXm12Xe12XSz2HGx122v12ar1GSp02Gn0mCn0gg1c12l0QhHjVuj0Fihz9zq9lKdzE+by02ZykmXyUaVyESTx0GRxgg2dD2NxDuLwjmJwTeHwDWFvzODvjGBvS9/vAhChSt7ulwpebknd7gldbcjc7ZcclehCDd2Hm2yHGuwG2mvGWetGGWsv9jtFmOqFWGpEl2mEFukDlmiCE2WC1WfXG5TnggxbQg4dwhIjvX6/vP4/vL4/fD2/e/2/O30/Oz0++ny+ufw+ubw+ePu+ODs+Ag5eQhDh9ro9tno9dfm9dbm9NTk9J/K4dDi8s7g8s3g8cve8cre8Mjc8Mfc78Pa7gg6er7Y7BxqsLrW67nW6rfU6rXU6bLS6IG6263Q5qvQ5qjO5KbO5C19u6TM46PM4wg7fJ3K4ZrI4JfG35TE35LE3n+52ghJkIzA3dPk84m+3IW83IS82zyMwwg8fX242nq22XW02HKy2G+w1whEiGyu1mqu1mis1T+PxWWq1GOo083f8Qg9f1xcpNBaos9XoM5WoM5Tns1RnMxOmstLmMpKmMlIlshFlMdCksYITpg+jsQISpE6isI4iME2hsA0hL8ygr4ufrwsfLoqerkmdrgkdLcicrYgcLQfbrMdbLEIRYoaaK4ZZq0XZKsVYqkUYKgSXqYRXFylD1qjDliiDFagXG5UnglSnQgwayFxtSkKXQovQml0c1BlckNvbXBvbmVudCA4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9EZWNvZGVQYXJtcyA8PCAvUHJlZGljdG9yIDEwIC9Db2xvcnMgMSAvQ29sdW1ucyA0MCAvQml0c1BlckNvbXBvbmVudCA4ID4+Ci9MZW5ndGggNDkgMCBSID4+CnN0cmVhbQp4nI3K4wIYBACAwS8s28u212px2baNLSzbtm3bNrfVaq1aWrb1DL3C3e/rX9TxqMVQq6DWRm2G2hk1DHUC6jzUdaj7UM+g3kKxmVD7oM5HvYT6AbU8agvUiahHUeNR86LWQR2D+hA1BWoI6h/Ucai/Ucei/kIdhPoTdTTqD9RRqN9RR6J+Q/2KOgL1C+pw1M+ow1A/oQ5F/Yg6BHUD6mDU96jhqO9Q36L+Q32DOhD1NeoA1Feo/VH7ob5E7Yv6AnU3agJqb9ReqM9Re6I+Q+2B+hS1O+oT1G6oj1G7op5G7YL6CPUaaifUB6gdUeNQO6DeR22PGot6D7Ud6l3UtqgxqG1Q76DeRo1GbYUahdoSNRK1OWp+1KaoTVBvoDZGvY7aCPUq6hXUy6gNUS+iNkC9gFof9TxqPdS6qOdQU6OeRT2Cug31FOpJ1FDUE6i1UI+h1kQtg1oD9TDqIdTqqAdRq6EeQN2PuhS1Mmow6l7UPahBqLtQd6JWRK2AugN1O2o51LKoW1FLo5ZC3YK6GbUk6ibUjaglUIujrkeNQC2KWgR1LWph1EKoa1BXoxZELYC6CnUlaj7Um6grUJej5kHNjboMNRdqTtTjqEtQA1FzoC5GXYSaHTUb6kLUBahZUbOgtkbNjJoUtSrqXNSMqBlQ56BWQk2Pmg51Nuos1LSoaVBnoqZCTYk6A3U6anLk8TTUqajJUANQp6BORk2Cmhh1Emoi9D/lXl4ACmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKNTUzCmVuZG9iagoyIDAgb2JqCjw8IC9UeXBlIC9QYWdlcyAvS2lkcyBbIDExIDAgUiBdIC9Db3VudCAxID4+CmVuZG9iago1MCAwIG9iago8PCAvQ3JlYXRvciAoTWF0cGxvdGxpYiB2My45LjIsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My45LjIpCi9DcmVhdGlvbkRhdGUgKEQ6MjAyNDEwMDIwODE2MDEtMDQnMDAnKSA+PgplbmRvYmoKeHJlZgowIDUxCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDE0ODAxIDAwMDAwIG4gCjAwMDAwMTEzNzAgMDAwMDAgbiAKMDAwMDAxMTQxMyAwMDAwMCBuIAowMDAwMDExNTEyIDAwMDAwIG4gCjAwMDAwMTE1MzMgMDAwMDAgbiAKMDAwMDAxMTU1NCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDQgMDAwMDAgbiAKMDAwMDAwMTUwNiAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDE0ODUgMDAwMDAgbiAKMDAwMDAxMTczMyAwMDAwMCBuIAowMDAwMDEzMjM4IDAwMDAwIG4gCjAwMDAwMDM0NzYgMDAwMDAgbiAKMDAwMDAwMzI2MSAwMDAwMCBuIAowMDAwMDAyOTI1IDAwMDAwIG4gCjAwMDAwMDQ1MjkgMDAwMDAgbiAKMDAwMDAwMTUyNiAwMDAwMCBuIAowMDAwMDAxNzc3IDAwMDAwIG4gCjAwMDAwMDIwNjkgMDAwMDAgbiAKMDAwMDAwMjM4NiAwMDAwMCBuIAowMDAwMDAyNjg2IDAwMDAwIG4gCjAwMDAwMTAwNDMgMDAwMDAgbiAKMDAwMDAwOTgzNiAwMDAwMCBuIAowMDAwMDA5MzgyIDAwMDAwIG4gCjAwMDAwMTEwOTYgMDAwMDAgbiAKMDAwMDAwNDU3MSAwMDAwMCBuIAowMDAwMDA0ODkxIDAwMDAwIG4gCjAwMDAwMDUwNDIgMDAwMDAgbiAKMDAwMDAwNTQyMiAwMDAwMCBuIAowMDAwMDA1NjMxIDAwMDAwIG4gCjAwMDAwMDU3NzYgMDAwMDAgbiAKMDAwMDAwNTkxNyAwMDAwMCBuIAowMDAwMDA2MjIyIDAwMDAwIG4gCjAwMDAwMDY2OTAgMDAwMDAgbiAKMDAwMDAwNzAxMiAwMDAwMCBuIAowMDAwMDA3MTc4IDAwMDAwIG4gCjAwMDAwMDc1NzMgMDAwMDAgbiAKMDAwMDAwNzcyOCAwMDAwMCBuIAowMDAwMDA3ODUxIDAwMDAwIG4gCjAwMDAwMDc5OTMgMDAwMDAgbiAKMDAwMDAwODExOSAwMDAwMCBuIAowMDAwMDA4MjA5IDAwMDAwIG4gCjAwMDAwMDg2MjIgMDAwMDAgbiAKMDAwMDAwODk0NiAwMDAwMCBuIAowMDAwMDA5MDk0IDAwMDAwIG4gCjAwMDAwMTMyMTggMDAwMDAgbiAKMDAwMDAxNDc4MSAwMDAwMCBuIAowMDAwMDE0ODYxIDAwMDAwIG4gCnRyYWlsZXIKPDwgL1NpemUgNTEgL1Jvb3QgMSAwIFIgL0luZm8gNTAgMCBSID4+CnN0YXJ0eHJlZgoxNTAxOAolJUVPRgo=", + "image/svg+xml": "\n\n\n \n \n \n \n 2024-10-02T08:16:01.140225\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "text/plain": "
" }, "metadata": {}, "output_type": "display_data" @@ -451,7 +436,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 6, "id": "72eea5119410473aa328ad9291626812", "metadata": { "collapsed": false @@ -459,9 +444,9 @@ "outputs": [ { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-10-01T22:13:24.106177\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNDI0Ljg5NzUgMjc5Ljk4Mzc1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nK2dS49kSXKd9/krYkkuGO3vx5IjiS3MbsgGtBjMguh5cKgeAuRQIqBfr3PMPOOaWVRmZVb3AE12nY6615+fm5ub+f3uv//h//75xz/84/e/uv23f3r57vrTj399ybd/xT9/uqXbv+Kf/7rl2/f4508vCX/6y0sr7b727PjDT9cfytz3vSr+7Sf8zv7pX15e/vjy3d/jAX/FX/n+5aWOext9lH6r894bf/WXl7LmHc9x6k9WLbPc53nk9QSrnhcVfdGfUGQU/75QAbyWykubLOzay77ZiO2ezotffoUW+K+Xf8f/Tbe/S3gW3jlHT6uXMuutlPvutx//8vKrH16++4d8y+n2wx+lgX74/ctvb3+T7in97e13tx9+/fI/fnj5zYuU42XX+yhjr23fb8T33r/Kve2W58h1tI+8vzy/P9d9r30kV38jvvf+XNa9lFrGTK33jxSgfaEAq9/RhHm6AlziuwWYFa8stc/d24cKMJ4LUCr+f25lZDf4jPpeEUre94EftrVGHR8pwvpCEebgi2svrghGfbcIo99bTr3uOcv8QBGyG4fmSbvghQuv2fcyVy7vPebP//b7//PjH35/++cfb3/9z3/+j/99++u//PmPf4suuWc+4W/+8/bb7//n//vdc2WvmdowfDBy50RlK0od1S92eb33vtkUrd1b3SNh8qHW7zb5e4VAI+NppVZXiEt9vxBgTQds+iodvf92IfCz9wqRU7t3zDrMeFsKI79fjJzSfeaZMWBra++Uo7/fGBnvHr3M1n05Lvkr5QARVu9rppJ7facc8yvtMVCfnXvKvhyX/KVyzHu55T7uezfgM+9R3ilB/sq4yGvdd02l+9Fp5DeLAHjlWusqeb43MPNXBgX+OoC1U/ZD08hvlaCgRzArcl0ZaHyvCF8ZD6X1e0lzDj8ujfxmEVomlBbWp7rWe0UIQ+Hfb18wBkrPmAg3kP5e2u0//nD7X7d/u5Xbr2+QuZjfM8bbWKPMjjq0cf438V9m6mvhL5Z9+8fvb96qMQu9ZRFetlpKQD9VTEBhUe8wK0rB+6kOlI8d0Pd9llbXFHXlnAbUgQV8jK4w25gbIs47ltSJfoNac5qND5ioAmyIOUQtHdOMKpCOYVa3qC0VtCHUDeT1koqo+Gvy21XBqlmHvK2Orc+FmVQzFkepWl0N7Qh1ZxQ9jy1Vq3ujh6iyO+vqUjV02JTRvfc9t5GyVK2VhYdAzaliDVtZnttaUTihNveE8japXOt4QqGMWbZn6Ulq1zgkq8jtvvHsIdVrCz2lMukxVpX6YZZneTQWtIm3bKlfZz9PkWF9tZy7FKTXlAepkLFu4wm1SA17ayN3kRtMKixuUkXQKrUlMv4wJvpd5Flbl1c2TM20lz5jzSWPaBiXPe8pVeS6o8XrCQ2JRpMqom37ULndax1lSxVHxUyQUvfFpRV8ErmhMzk08iiwpNJZ/kbfsOtEHnf8p7mkjmikOaRVJ9fwtruUb6wlPMyTRgLXAKogcKlSkAl7ee0ypYozj6Y1Xxkcg90iak2jqtrvC0MpSR0nfppU3neiZEgdZ19bCg0zFf28i1QRIzBtKd2eeHviHyivqVUsKaO+peikQJEBUZE7Wrg1HU94SZ1b5H3vMGy0C1bZTSpDsDX0vxZ7tSp1IRHBmp2kiguDL7H10EGYJPWoM/ecRe2cklzaKWO1SirD5qkTBoXIWEJ0t1HrPcO67FLHjWFUpdQgE5Azi9QRjVtlABN6bMkldcSgwOwQGZhNg0OOMqZ4Upm/wSohddyYlFrsXvD+VKfUcaPuMvwKFjbMDLSPyHss4U/hkjg5fvc9YRbqk0djT8MiFRnv71LHIWMrlSFyPTOaGyZMc3SyyNjNpCnyw/ykPDDiZcX5p5ff3L4F0lgewLQFpoHVE5hOvWEV29xmvEdmELbtjH+xYIaIfoPV5cBMFfVY2YGZKv6z9P4DzBRrWTs7MFNtoG1zYKbaO2DjwEx1oPc8mKkuNP12YKa6QZnswAx1YIjIGLnATLXChvZgpkoLvzswU11ox+rAzKpjpPbqwUwZ9RjNg7lzbueWtgcz5cWJ6cEMeQPFpXgyYxSi0lkfcpEZMpoz1UBmyBu/ysuTeWRuuXIvnszoM8yvrcx5kHkQpAnT1KN5LkxMmCnNo3nj3Y3c9WjeS3AyPJlzKtjEJKxWHs00x/HuoWvExWbsvYAUQGB4OMMWQPfRfvB4lj4ZQFz3fMZijL4aKJEDNFr1zoVJl9+L0DmDbxhruXlESyeuIcPKMJq9xX7OntFoHYysJvg3jMZjMZrylIY0kM5roOx9SZcaSvOvLgBlLY/pgoEGY5k0c6AuKCQNyD4cqfmLumE8bI9qbrMxLYei8GI1egatXba0gYE1dSwEQiwDa74IA6wLIQytqa+OPtse18AGSo++7Z7X1Aemq7baBWysuRgURJQnNn+P4ZezQzbbJlXQtnhmF0432ESleGizUkAausBTmzqeV0b12Ka+sRkXnH0zt9HAAIWiGtQe3AZiFmCtsv/lXYRPKR+azjGcaq8KxYvhosL+GY7hVIFtZ1tTQ4uJSXQhXNS5kkc41YWN9HAIp4qWTR7hooIWxSEc6oK9LVuBC+GigmXNIZwqRpkMygvhVDGOhUEXwkVdTYH6QDjVSueeRzhljN9UPcJFxujKHuGUe5sj2NaUAQ01ly+Ei7yOPXohnDIMqlQ8wimjoLrGXAgXeenG0CCcMmb16A7hUNH6B78G4Vwd0DTdI1xkdGLzCKeMkV89wqmCENUDnCo4qg1y8RvDBIvOVAv4wjfkiuGp6+VFb8hojbGWhzefjU7QrnmwW1Q0djCuKe+uvXuBm08myroH9+SySGvNgxsyFjoU1YObD8F+twRuU+5Y06rHtshtKIEuaos8dYEy0KaMVVtKcjFbVOyRlkc2ZaCieGBL8dDu1fNa5J0CrqluTPZgW7O/UlNwGFhTxkxUal6splzQTMWjWmRQNtjWlLGH1vXnFdQUURMZqIbTMm6qLrQG05RHyWICGkpTnmm2YFuLvOsYP4/RS8xqFguMxmjGnMmcb/yDOEYwud5l9Coc1jQyLKNFnTC0HaOpiq/RMVpUjBoHaYrlWIAXpEXFlm47SIuK3ex2kKYK5MgguCAtKgyI7CBNFcVK3UFaVJjk20GaagdIhoO0qGj64iBNdWR1t1yQFrWv6AChjH1YtLNF7nsHO5vyysqei9Gicph5RlPeNbg/IBKXrXlCU874t+0JTbnq0mQATZVu0+kADRVTYe3qAY2WxXzbKdjYPI5Kc8pW0wAaMib61gXuIrS8se7aPaKXmt5K1wvRlIHInT2iVe4K9AvRIgPGwf8hz85DdrcXokXFMhkQLTLZ7Rktxcag2J7R2n5DF6eL0aw7mmoGBwhlWq2B0SJ3faVhNGXo4pMzjBZ5KjgMo7W5i3pRHowWFV05PaMpY5+oboAL0pTpaAseEJGBgOkpTXm0LGPHUJoyna/VU1rkeRaii9KUVx0ytg2lKQOq+uuL0iIDvMVSGiImoJo7htKUsRPLw1Na5KlrsKE0ZTbJ9pSmXLN2+8+gdD/uj7Hppk6vzKabWnjdSM/3KI0RVzBalndTUwVum3dTU6UrbDpKU0VDL+cNoYhNzvCUhloBFjWPH5SmClNTLL+L0lQxZsU7dlGaKhp/ezc11ZaDM4Qi/n/3zhCq2BALUy5Ib3mU+jcvSFPdsH28lxpqA9FXsKQp04M7PKQpNxj03UOa8ihD+X9RmjKG+jGZH5SGjNrXGpwhlDGCAqZ51p+xhwqYpoyNVame05BXSkuXiwenoW7MgBEM6d04A2fwUkOlT1HNSeMKGYR61+JdmEbzVry/FY9pNhksQbXYrCukoUmAMO0E4woZ9OLpGmAcIWQzLEdduowjZHFbhddnR+osi347DnbjCOE6NcbKwVedMeRgUOj+znpCoJeGXdv2tKZeMdFa9IUs9nPqB8zGF4IexZxSMl/AFn22Gn0hosPUa8Ujm/pIqanb9cFs/fnUEWOgLTpHXaC26HQyBmxrMbtuIAy3pVr0cw8PbtErB60ntzRPTzMHdEtzJszGwG52C/pTTycMvKVDwW7nC2Hvt3LOuQy9Ycrix+Usihe+Ofg5LNXfffE7N+6nMYOXBzh1bBlK/5m+kFef9VwgeK3q/yj4D8fi5q7kPYC7k/6L4CKD0MGhTXlUNL/3hojMgJNqIU51okLFHzZSxmRSi+DCuMiYwr07jlPeGRvt7UAuMgONHMjp+Ezo1FwcykVeuhW+UE4VvaYxFRfLRd6tVe/ZFp8qRLX4HjQXGY+eAefUq57IGpqL2nNawTGiOs0Nz3PRseWfwbstb8WMVk5dRNeKYhvZPdOlJ0BmPai8oM567DyOtX9RXRzO9LYGrJNMnKxP5jf+a9FCGv9IJ5HLOWZ8cH0QsdgThdNHzDBQqexw+jhY53Gs3gvrAzM2HdfLBfVB//M6p34X1ek5HtxLeqgP8V01dcE/mD7YaNh5BKQP2kqYAdsTnTLerf1wAZ3HDB0byuV5ThnzPgWcDzYZHjM8zVUexyh/wJwPKe14FS6Wa0mKbI0MyokzDMngIUGLFEYTdQ9yHmystpWbF8c353w7J3kG46NLiEIL5jeX1t5608NDg/HBg/iResT44KkE5n3waechlmFSQ9lgXM6NdtOTAIPxjtlXSvbHkCwlrOpSnzheZRMeKY7Owspaa6Q4liyMIG0xQ/EqR1tZVsqf4y15hXh7ChcRtfLM5l2MZ1QTY2V7lzZMCiy13N54jFdxiw7ZZxmM18x1X90KF8Yr9/5bd4cG45AbZ2bAeJVo11K8Zxsb/3viYZ93bVOG7VcDxqECLTXEjVCGkT2HN8kpw0DO4YCSmEsbpqwPHaGMDu/HSfLgeGX0HkZ7CxyHDhOpHVf2RfLKtY2RdoHkVYKNz3MMydH1CYuK0tCQHHpGu5Xg5aZeYaqMYJ1Tx4tSD0eV1FG/nXogOfTJcEDvSKGM7k96JnehnPrmOrE8y3koh2XlOG8umFPHFOx6cmhOLKHDvpvqXDJmOnSsf0mPVI2ZzkO/2pvuDYyZLiHN6ZwkGEMd+sIY1wXWGOqYcgl7+eldKpTRiDlSnTrI0mo8sYQO1OiQt4Y6dJRranXtmSWmBYqtDgpjqEOfFdbBDIY6dA7BFdhOHYPneHuNoY4OzQkrcvB/U8eEnjkY6pUxWr3k4F2h3jBlZvCBy3gB0yPgIU9MsnOWeQG+8jiwrhwBXxny8XomagAPnRbcE+ChwwwcKRxaUl8EeTi0pMnMxhnOy5LxosbdTQ6AxzK0R1l6ZmAQv+To/QTfGMSLx6eN6A+nPiuq8rOCTWyoye37l7c5XriIYQ1ugeMYSGCmFMJwvCzZRMisNxxH16IR1ca6OF6kWevy55OEC8o2xNK3HOepAeAdOY4yoVnk0ZbjDP0famJ7kIMWwf1NFWRTX7nlOBAMw0EKYjneyfG5vQdcwVZ28K4IeEYpIdSE8mZbBh84Jxy2tL2HKECZWDQmIsUxI/aJq7AQ36AdjbIIcQxBWHDqxTYQx0BGs/UUIc65NDGdR4A4dBjpGgZlII5/w3/auvcwEG+Mjl7noNBAvDEYADvmEiAOHaM592CSg5w8e5o9+lqgYwWqvQeIc8qPY/UahkPuPGfageHQ98O3ZRjepAv3Ds4WyBhVykbLcEyeDH0Gxzh1zJequmE49A17cEdniwTBPqIAL4ZLpGPSwyXLcIlkw98N3nHqLFiMD6RO9qbIcHQQqNmSDzyRfivrOE8Mw6HDGt8KTcPwzhPmWnSpMRAHRIAKdXlaiJNXCfDtAeLQ0f0pusnp90gMhhwB4p1+66GRDM5KZyZCPfi1Vjp+UrClHQ7itMbHCSz0RnpNu64QeEId2O16mGsYDn1yySqB4dA3pmH/mWb6fPWvvDgHeZLwev3f+1Y6sbISg0kc3Tl3ufR4uGOaYXRNHzyoDk09XLvQ3uiG32qNGrRzwtObmT3ahQN7yRbSoF1+PdUyNmjns8uhgEE7Ze61ffwJ5YqalOBrYakxSWTpNmyXbVVVl7BhO2W6fIKvhZxaeHa00Rv3raMrHg3coS/OuBbgfhpWgWToTt4xXjoEolDHmNgaNWjwDh3ySk94b3TD5xoCvYWb2Omu4EOnjqF5DmgN3pvE/cpgdnjnVqIfB4qhO/1WXa0sR3f6lpLGCFq4d3nPk4UOnYHdugZ5uK9W1Bh0dB88ZddTHUd3/NVdurqcAt0x5bXxHd07g9VzpPtgUFbRGBRLdyzoKMCThc7VoOtpnoP7ZALhcf1auE/pBaWghfuUXeyTgQ7wJYxd9f5auNMQ37WFqMIsyQd7hqhCWVPQehpfYuBOrtZX14mBO9aOzM1giFKh3iqP6wPcudasrsaRhTv0jfLUEFbIYVSwvajRQofOg4YVPemdQXEMVohwzzwQ0Vw5A3fUmxwKYYXUB+ydFV3pnd69pL4CR3ceaq+qS5ClO6cMWqf/PLon64Q5QYWwN+ieOajv7+fssHlhFjGkwuGdm20ebPjAQnEtrLzF4LBOGOaQjuTDVsQl0s+st8Y7T1phYs5gvNO51UYAPIz0NTR21JvusDlrDXxnih0w92S7o62Z2OeTd8T+BxXV2WJs9yIRwdF0L3JSMaLpzvPyWXN0pVcergNxIYFH9IWqRWe6PCcfD7M13nmUPk9GjbXeoY+lk85Z74We1lGjM/3sdWK0uDTN6vMsB8YFI1ErqUcXDHoDE+HJepe0tnwCHK0LBtMes2yFkHHqPNIeIZ5FnWjrRJ5bFwxgiRHRg0td/GUJI3YGwNNhtmpWj5N1wXD4Tg3KcC4Y9sQ8ZxbGBYNRgZbVM2HrguncfGjSgXPBMK57nNFgXTCDmRY7uNZlgzdaUpeH98CgYfNT2Dg9LaOo+eI8MIu74ROBYj0wW+KwNIjOemCYHQF4R8AnRr2MFjJ85DTwddlygM8AbdbNigM8kFfGAbkFvHhZNXjLAZ7WYTouFQN4mjblBD8avtPESLXHKBfxqazeNYTGemA4XFafwQODH8CM29EDw8UVM3fswHculpjaGsRuneySFlVy5LtgNesR4Cf5rmz/7Q0dj1/c2+13t3T7/YtN0Lx9W4KmSwk2sOdBDEBegsedxzZYd5cPUaQ8Xkl9wZ5HUyBkCx73wbDPrKaWgT1k7knEMjO0Z/YKANA87QmCdLZxhvaQMXDHCgeng5u1MqM1j5IylNaHk5/zmi1HUIb2g0MylxyM+cGYBLROCFbM2gon/tzQnodT2G7rxDe0p45fp+hwlyydkWWQWdpTTz2HmEV5bT/ne4b1LOXK6clTw0rB3Cshrpw65sHKPjdImgaDJcTDUJYA1ehtZ/uW15XQoJ7dwXjs6KjhKSkGg9raBvWDc2usJ1t+8OgmndhwGxTDvXw5YfEG9dAfWSQW9UMibE/XXqjnyEPfzGjLQ5+o+I6eGujY0Z70I4N6Duyaju1vWM/jS1RW/c8+RSgzRyGGxfAAGH39ZMxzmjEfdATWD0kPGTWynpMVEyOyXqY25nA05nmAi3muR7KG9YMZSCdO0h6n0o0w9wz5nNQTfr+fHDWbx15bn2Nt+c0UkKFnCNaWB3Xwd9sXjlMxSHRiOVueKY1rnYPThy2/eYat6cDOlt8wrqoe7DhbnvU+kdXOlicgVq8t2vJM7YScfynW3/KLc75/OM8Trc8JQJ+xAzwKiyGWd4iMwbQASaWehu9QFyO1l+P7XHSU6gQxfJ/M+ceeM5yoTubWN3UoGr5P9f1XH4dOGcNpdR+ILjI4Gbw1UzLESzxRpdxgdARrfkrOdw9hjiKvV6/4BXjKJ6rK8l3krfdVWL6LjjaJzhp56VbTxfKdutifge9TstuPV9kAfsoZ10laNISX9mqpRGcNdeZKRmeNNDvaJnvCs5NovATCU8Z4j7Y8e7oJPTzgmS2KJlZCGsBzwODpKeQPiQ6Olxj1SEZXRrcEwHM4YvikEJ8uv0f5UnTWsDxNcOMAj+FWeOAeE0DXYujUjAmg2EQRAur6NoAvneMsJoCSNZgE6tO46C4IwhKtnLroTn33dYIbTQIoqd+P39vkf1JG16yY/zkkLadrlv2V/0kZa1ANhrzqOceYR33M2D3EPIrOgRATQKknWIvBU6PF7PME0VwJoCcN9ikBVIKcwJ/q6X5a4Ti4TAIo9Vo18uJKAJWVElvGECwjbbzXiH540RezVjzdRR9ZrV2bAEq91fwtiftvW/JXzue3ZYNKHGkSCjnQQ8aUX8I1A/qFaTMBvBA7A7kwS9OTfvFMEyzYnvSL0ZWYaMExD3lgaoSsUMqzZI32NqSnPJbGtRnSL+7pksakGdRTxgIt5y4G9ZTrqCugnvJr4pJBvcj5pK1fqJeH9JOCaFgv72zl6dRVioiOGoH1rBFWrhZteeodK1L03EjDJA27sKxnO85aFXOG9dTx3BrDINkdsM9nDINk76Gc0THPrsacX9GcXxKIpLUysGfftMNiw3rJh8IYCAHuZO7i6Wdk/WDsCSZVuIhFj81nj7Z8ojHRZ422fEpM+zrr3YV68Bez89xZ8yA9g/AL9+oe9BgowF2P0ZCbMbm5Fk95JgOg2GoeXJjHjysjikIwJOTW6gjuGqq8XiN4a/gMXjYYvPGUz+UvhvBU0X96X8oD8FunrZLt4jtlTPESTllFnsdfctFdf32iAy+4y7P7jvHsUpCegg+eKqZkC8HsUhcsTNtznXLjcuixLg0yTpzQK9Up8jLAkC0qbbqezlYp16LXERmkbxllZYc8JMo8Lf6Gg9U3gX6ljt6+LXUUcwTPZF5KALoY9DUHy53ZDq1qtoMFeiUw9SIdA3SomKbhAi2R61zqcTdA5zNACn+Flsgg8RPQMWe2Fs/ynGfatFwDz7k6Db3xwfKc846mX+A5vSRpruCJp8ykOJ/sLzI426Nvhi21h0bkOp5Dn6/+DctzOlVmzzGsnXptGsjleM68k3l8P5bn9BX1ucK1LZpI8gVPvOTH1LJjMKTk05Sszzc8L+zTWkJcu5r64FlI/Nc0nnEeb4lemcpaSiQ6dWwj4+0ty3p5DNBRHIyC17iYi+gsJuNHYiwks41WSfF2LeodgDlWuk1awva6xPxSWY8ws6dnOv/imq9B9TZnKfO0Q6nicpYwFlt6vr+FKVTcl3mwU8bU06Xa+mYwLSbDZatHO/tk4385+ma4E8JfKtnRnZv1jpWzh+tbuLffTAnYnu8SYshbmMJB6+DVbVPjPg3g6S9jeFsw3umfwgKrW4+L8HQ3pZxycMyIV6mpo9IQnn5kcD8HwmtqQdP9wivhJbEgpxIOWOmAWufCCEN4ypieI9zaQhnTZ4cQd8pofCHHL0X4K+309m1ppxxBDLDI3vlemBUE8ob7EQvTXMZxPF6ERx+BYLBbnfOdYxbzp4Vwd5iZdKdrGKIhPGDKW4PkdMwQfvPGu6wuREN4zJMxmqYdGMTDzGKH1OB9B79Z1B3iJJkwWWOUJK2srUGthu/Mo81Zb1szfN+8/Qc/n4HveMnkpb078H0zFjQvjao2fN/oSh5OjcD3zZC2cfYDlu9yS1puMZBmMXAYPRRPWhfRvYfy2vKdbol1Qvgs36cEiyR/rQtlYH+NGOzOewNq04ng+I6SJWzOYrA7dLzzpNdavg/u4Ve4OUDYWtu5yMzyvdMVt0q8nWsx5J8hM5HvEgDb4zkrN1GA8fQXvMgeZ4z0RPcmp1yaX2Xxzpzcc4+BpbskT6QZ7g+QLU6p2pQhIxWQzTsGScqKnjVEKmSk8lDoCe+yFZ8nd99npGLwp/WckZrAshmDJLmE8qaWiHfGcnM1Kx7vsoQysTX63rmEolo5XPhCvWGKxtsUZW3trZybYExGatH7b4MVf/Q9ou8dHVTWuX7x4XqXOxOGek6t6136/jXa3wa6856ec0mMjXPnKQzMsuh5h06b5pd0zVzJqbdvSk51Nw4bzOfBqy/L9gE1lCe9jwHzkDsm83KeGaq8HS4HzGeGrS3NJrgwTzmlrI6uC/OFWVeMnfe3DFBGH+gtNRfmKVdsZLK/aIAyJuNSX8sD87yQjolHIT1V7qmDxdG9E54yqn7yiB6kp1wqRk0gPaccdiU1emaoY0U8wSQX6WWKYlmNaU1ysXM+Dp4L9JDofz5+gwv01Ec/wcsG9NSxi1czzYCeeuonzdeAHnOKj0zbX45LudG/sz3oqaexTiTlBXred4dZrzHWBvTUK4yeHrKaCDAwIvdgyQvY6AwOl8RQ59nxCCE1JXGSnkPlC/SUYcfmePtAQb+h9C3cE0M5swHDMSvKJBM5BNRQTgPLe7gql7TGWqqx1NYNz3xsmjYhooZ6aXMFDw1tLFi89dyta+5hLLwPrYxwyEq9vCamWT883sS7z2rwwye57q6mkNJEXXIORiA974ngChBJv2nJdzXjLOlZcab5lED6zevb6U0KpN+StLrOJTMX6TFTMUJ0S2pJr0m0JV7vxY7gVXnTn7JuhsOLSexRvxnytk58u0H9JpXXSYk1rN+M0zwH5Qb1tM9S10TfX8xr84iefAqo+VgKaylLrrrJ3g1PGeMhxNOIiumXA+sLp1AKFzOKCqOx+PNWyglFbP4+GZHzSf4zrC+MGMt6LmVYTznxjNezvjDD77i+DeuZx7X3DFd/idzayXG6WF848bcuaIb1lJnp4eMnKXd+iKYE1lPHYptCRA31xoDFYNVTr1wCg1UvetV8dMt6yLyrUO/8NaynzpKFkBrqbMUenPDUeU1ZCclPpXAGjhTuahQZnC0hfJL6ghV9Ymcu1rNkjFAIyU/UB5bJHIx66lioaglueOqSdhZiaqiTJTlkP5FVPDLpIfuJemMaUgmwL3ogk318PC9yXf31unoD+yIBgurVtrRnv2Ehb+GqGVlRW4mw578u7JCfElgnX9vDxeiS4tRaO1HzJnhSjsbOjenGqmebcY3JwapH4fvGi0JATZG7PMeKATVFjEhdli3roWMDXltMfZInbs0ztKzXy3LbjPfMFHF9j2jUc4TAOKnhjnTmU6I4q8XgScYHg+47XjPDMHD6JrJDPQNIc+ol3k/ASM75WBjcDQVopjJi+mrnQXLXDG0XUMMZtqqMy1+K9TaX9R2gV949DrPZu+FFRv9EJ00VI2p074YX+dzxcwGdmcM8WQzGO+WTAWN4ThVdUILtTjnN2ryLpmguZwpXEhT9AlUPAZIiwzjY/r5dkVPX1d7wvPI7Riejx/Cccqdx4HlOmf7hEEEjesonatDwnGnWs2kugOV5lVCrkz1qeE6dfRiuJKCOrbCGBligU4cBGT9rIXqjhyIAXdLBXxcGA/TKrwgMvYHbAJ1yXyft0wCdes16QmeBTh3tGq9Qp77mOQOzQKcOSyveMCM62nMFN3yRXF+sDOELF6LzwDxcwys6rzAIVxKIjk1s8zE0lAfvLgzprKK33VaMoaEOBus5rwG65O5nNYCt+S4NXs5NJsZ8p15f7+w29jv1VJ+CJKm3SYd+sN+pt5MVa8x3ymiz5q97pIyuOjmul/VOuZ/zWxNEQxlmWEx3ol4Y8xhyWUXvu7fgphG9nJgYE0PD2xT4KYHmgS46Fq8VL1GvjLKa5zZgE0PDW1RmPVuhRwwN73wgHLYHepG7Hfpa4T4C0deJSLYxNJKh8Hq4bWJoqKPR6i9pvE/jm/mWxFYA6K57SEd6qrmsSPou15yvkPgkMj860h3quwTjzmi7Uy7Hz2lY3yV+fzaf+UR5rJ4l1MywnvJoYwbbnTJGRwt+GsqFX+PwrO8Swq93BhrWdx5ztNX97eoij67ZVob1lJkoGHKfRC/nqgTLeup0UYd7C4ok7K1zXa1hPXWQQa1Zw3rqPdf4BSPRYUukyPouV1j1Gk5ci3B5lOiRF32qk82gnupIx49iUE8dmDpXQV6ol1z41uNV66KLfzCgnumM66SNW9RTZwR6tN2p95OTblFPHZMpXigmejlhbxb11FM910deqIec+f2EkPok+tgxHF5kpryG1FbR6ewOqU+i87KKSHrqzFWNnhpeOMA872C9i44RtaOnhjrWnRQjJqnXfS5MuFBPufBMN7CeeqI3IsCeOak7nw94GNhTn7S7A+ypYzuY4yczNLc1txAPL3rZzxGT1NE9OZy7UqcVMsPBq+gAW3a5T6KOFVOfRO713NJgYE+dlyJE2FMvLa2Q+iQ6Orl/Q2rrm7BP1lPzLXmuhXkfAHUJbvkhN4qr1WtwTxnVH8FVM3Qn6uNrRC1dsWlwT5mXkAXc8x5AdFX2AZMiTzSvz30SGbuz6QNsRMa8Wj42XmRGVfjcJ5HTIaPBPXNeVk/hnvZyUmFGMO0pw2RTo83gnnpNMfdJ5McxrqE9E2o2lofoladOWzTE14jeW44XAYuO98/oqpGEnaanepb20MeuLX4YSfSZ9Xt/BveU2349lr1wT7084mUu3DMfiAGQ4UZg0ZlSEF011JnEGA5giyTGFU2Ms7iXvKKH6+XCPe+PhI3aIu4Zow0T+An3kgFYz92fBvdEaj+t43FPv9cIrho6dfM+aUj2DHbSM9DTjBE2c+oNLeFDG9QxlvSsx3prgBPU4yRz2hAb9ETaen7gQmwGh2/u8aIaTDDeRxHukqTMuPMWIiipt5JPcIzx1kzeePd69Gu8NZPnXeucSxpvDfTBG2Cjt2YyUjSdTyoZdw10cYXHuwymHF2/cv1y10y5/ehE1Bh3zWSwWKvbH8JOxnKN83ER466ZzJSsGuVq3TX8IC/7PJ7CTt50X/Q7FNZdA7jtdq5PPMDnHQXp8aFwT+Uvfqj8y98ex9O+9AXzv7z1BXP8/hOfQXe/vh7z3tO/+/uq30H/NT/djn/kJszzIfeXsuWTx/INhsGrjfRL6JkDbBrtJ2hDP/D+0BpG7RCF9+95hQ4bKj++PDT2Y12vD3uI/Xwf/vF87DdO+R/FuKQfbYkvGb27+WWxIBe5Iv2Iry9y4muR+NyH/Cj9T059raV51aMtvtSOP/JD9L96/RC93IGB8fX87dqPpka/YCQWhjydwvMmVuZmcSzyjDXKP71UrkrPMkZFktF+hgMGA/7dfeOetzW8/sXCWxSn+yp4CR/btp/yfevbj1/JCbQ1E19ifarZQ/Y1M/LnakZDTnvqzZrlL9fsW/NhbCX58bn03H0P2VfSyJ+rZFbz7r1Klrcq+W0x4raSicvEc08+ZF9JI3+qkjyH1sn9diXrW5X8tjBJU0lGpvXniXjJrpJW/lwlJezp/Z5sb1byW2KEbB3HeqwOto4P2dfRyJ+rI9f6r0zJ/uZo/aazcVtJXqH0PCUv2VfSyJ+rJG/P+sqUHG9V8p1DIVuTykvcnrvrIfuaGPlzNSk8IXq/u+ZbNfkmb6itI6PFvjDtHrKvo5E/V8ecv7r+rbfq+G1OAFNJfqr2edo9VFdFo36qhkyg+sqc27aCb9wA8GGT5iUa141xzNGimeNJRW3X+oIqtdWa/va1MF+oMcPC80dNmpw+UOVPGTimnta+ueppzZurntG6+Uw9P2Lg5I917cfMnbe71lo7V5WtsXNVOdo6n6nyB8ydXD5U5Q8aP29X2do+V5Wt6XNVOVo+n6jyR4yfXD9U5Q+aQm9W2VlCjyo7Q+hR5Sc76DNV/oAplNvHqvxZw+jF19jaRVeNrVl01ThaRZ+p8QcMo9w/Nq4/Zia93cnWSrqqbI2kq8rRRvpMlT9gJuXxoSq/YzSZelmb6aqXNZmuekWL6TP1+oDRlOeH6vVpEyoMXmtBXTW2BtRV42g/fabGHzCh8vpQjT9oUL05eK099aixNaceFY7W1Cfq+wGDKjuL6jcv/x+HgBfVCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTAzNTQKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTcgMCBvYmoKPDwgL0xlbmd0aCAyNDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFJbsQwDLv7FfzAAJasxXlPikEP7f+vJR0U7cEQI0tc4u7ERBZetlDXQofjw0ZeCZuB74PWnPgaseI/2kaklT9UWyATMVEkdFE3GvdIN7wK0X6kgleq91jzEXcrzVs6drG/98G05pEqq0I85Ngc2Uha10TR8T203nNDdMoggT43IQdEaY5ehaS/9sN1bTS7tTazJ6qDR6aE8kmzGprTKWbIbKjHbSpWMgo3qoyK+1RGWg/yNs4ygJPjhDJaT3asJqL81CeXkBcTccIuOzsWYhMLG4e0H5U+sfx86834m2mtpZBxQSI0xaXfZ7zH53j/AJVPXCYKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDc5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM3NVIwULC0ABJmpiYK5kaWCimGXEA+iJXLZWhpDmblgFkmxgZAlqmpKRILIgvTC2HB5GC0sYk51AQECyQHtjYHZlsOVwZXGgDWlBwMCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0xlbmd0aCAzMDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZJLbgMxDEP3PoUuEMD62Z7zpCi6mN5/2ycl6Yoc2RZFapa6TFlTHpA0k4R/6fBwsZ3yO2zPZmbgWqKXieWU59AVYu6ifNnMRl1ZJ8XqhGY6t+hRORcHNk2qn6sspd0ueA7XJp5b9hE/vNCgHtQ1Lgk3dFejZSk0Y6r7f9J7/Iwy4GpMXWxSq3sfPF5EVejoB0eJImOXF+fjQQnpSsJoWoiVd0UDQe7ytMp7Ce7b3mrIsgepmM47KWaw63RSLm4XhyEeyPKo8OWj2GtCz/iwKyX0SNiGM3In7mjG5tTI4pD+3o0ES4+uaCHz4K9u1i5gvFM6RWJkTnKsaYtVTvdQFNO5w70MEPVsRUMpc5HV6l/DzgtrlmwWeEr6BR6j3SZLDlbZ26hO76082dD3H1rXdB8KZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvTGVuZ3RoIDczIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDO2NFAwULAwU9A1NDZUMLI0VjA3M1BIMeQCCoFYuVwwsRwwy8wSxDI0N0Ni6ZoZQmWRWCDjcrhgBufAzMvhyuBKAwAeiRaVCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0xlbmd0aCA2OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwztjRQMFCwNFfQNTQ2VDA2MFEwNzNQSDHkgjFzwSywbA4XTB2EZQZiGBmaILHMgMaBJeEMkBk5cNNyuDK40gD6qRZFCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCAyMzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbsQwDLv7FfzAANbuvCfFoIf2/9dSyhQIQCW2uCViYyMCLzH4OYjc+JI1oyZ+Z3JX/CxPhUfCreBJFIGX4V52gssbxmU/DjMfvJdWzqTGkwzIRTY9PBEy2CUQOjC7BnXYZtqJviHhsyNSzUaW09cS9NIqBMpTtt/pghJtq/pz+6wLbfvaE052e+pJ5ROI55aswGXjFZPFWAY9UblLMX2Q6myhJ6G8KJ+DbD5qiESXKGfgicHBKNAO7LntZ+JVIWhd3adtY6hGSsfTvw1NTZII+UQJZ7Y07hb+f8+9vtf7D04hVBEKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9MZW5ndGggMTM2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2PQQ4DMQgD73mFn0AgQHjPVlUP2/9fS9h20wseyYBsUQaBJYd4hxvh0dsP30U2FWfjnF9SKWIhmE9wnzBTHI0pd/Jjj4BxlGosp2h4XkvOTcMXLXcTLaWtl5MZb7jul/dHlW2RDUXPLQtC12yS+TKBB3wYmEd142mlx932bK/2/ADObDRJCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFJigMwDLvnFfpAIV6TvKdDmUPn/9fKDoU5BAmvkpOWmFgLDzGEHyw9+JEhczf9G36i2btZepLJ2f+Y5yJTUfhSqC5iQl2IG8+hEfA9oWsSWbG98Tkso5lzvgcfhbgEM6EBY31JMrmo5pUhE04MdRwOWqTCuGtiw+Ja0TyN3G77RmZlJoQNj2RC3BiAiCDrArIYLJQ2NhMyWc4D7Q3JDVpg16kbUYuCK5TWCXSiVsSqzOCz5tZ2N0Mt8uCoffH6aFaXYIXRS/VYeF+FPpipmXbukkJ64U07IsweCqQyOy0rtXvE6m6B+j/LUvD9yff4Ha8PzfxcnAplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9MZW5ndGggOTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY3BEcAgCAT/VEEJCgraTyaTh/b/jRAyfGDnDu6EBQu2eUYfBZUmXhVYB0pj3FCPQL3hci3J3AUPcCd/2tBUnJbTd2mRSVUp3KQSef8OZyaQqHnRY533C2P7IzwKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvTGVuZ3RoIDE2NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkMdxBTEMQ++qAiUwgAr1rMfzD+v+r4b000F6GEIMYk/CsFxXcWF0w4+3LTMNf0cZ7sb6MmO81VggJ+gDDJGJq9Gk+nbFGar05NVirqOiXC86IhLMkuOrQCN8OrLHk7a2M/10Xh/sIe8T/yoq525hAS6q7kD5Uh/x1I/ZUeqaoY8qK2seatpXhF0RSts+LqcyTt29A1rhvZWrPdrvPx52OvIKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvTGVuZ3RoIDcyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiGeAmCBtEMUgFkSxmYkZRB2cAZHL4EoDACXbFskKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD3MORKAMAgF0J5T/COEyCL3cRyLeP9WMNEGHqt6oCE4g7rBreFgyrp0E+9T49XGnBIJqHhKTZa6C3rUtL7Uvmjgu+vmS9WJP83PF50Pux0Z3QplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9MZW5ndGggMTYzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQOxIDIQxDe06hI/gjAz7PZjIpNvdvY9hsUsDTWCCDuxOC1NqCieiCh7Yl3QXvrQRnY/zpNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75Q3D1X/W/Yt05m4mBycodCM3qU9z5NjuiurrJ/qTH3KzXfivsVWFpWUvLCbedu2ZACdxTOdqrPT8fCjr2CmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCAzMjIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVG7bcUwDOw1BRcwIH4lzeMgSJG3f5s72qlI07wfVV4ypVwudckqWWHypUN1iqZ8nmam/A71kOOYHtkhulPWlnsYFpaJeUodsZos93ALNr4AmhJzC/H3CPArgFHARKBu8fcPulkSQBoU/BTomquWWGICDYuFrdkV4lbdKVi4q/h2JLkHCXIxWehTDkWKKbfAfBks2ZFanOtyWQr/bn0CGmGFOOyzi0TgecADTCT+ZIBszz5b7OrqRTZ2hjjp0ICLgJvNJAFBUzirPrhh+2q75ueZKCc4OdavojG+DU7mS1LeV7nHz6BB3vgzPGd3jlAOmlAI9N0CIIfdwEaEPrXPwC4Dtkm7d2NK+ZxkKb4ENgr2qFMdyvBi7MxWb9j8x+jKZlFskJX10ekOytygE2Ieb2ShW7K2+zcPs33/AV8Ze2QKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9MZW5ndGggNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhyuDKw0A4bQNmAplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9MZW5ndGggMTYwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0xlbmd0aCAzMzQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVJLcsUgDNtzCl2gM/gH5DzpdLp4vf+2kpNFRg5g9DHlholKfFkgt6PWxLeNzECF4a+rzIXPSNvIOojLkIu4ki2Fe0Qs5DHEPMSC76vxHh75rMzJswfGL9l3Dyv21IRlIePFGdphFcdhFeRYsHUhqnt4U6TDqSTY44v/PsVzLQQtfEbQgF/kn6+O4PmSFmn3mG3TrnqwTDuqpLAcbE9zXiZfWme5Oh7PB8n2rtgRUrsCFIW5M85z4SjTVka0FnY2SGpcbG+O/VhK0IVuXEaKI5CfqSI8oKTJzCYK4o+cHnIqA2Hqmq50chtVcaeezDWbi7czSWbrvkixmcJ5XTiz/gxTZrV5J89yotSpCO+xZ0vQ0Dmunr2WWWh0mxO8pITPxk5PTr5XM+shORUJqWJaV8FpFJliCdsSX1NRU5p6Gf778u7xO37+ASxzfHMKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvTGVuZ3RoIDcwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMzNlMwULAwAhKmpoYK5kaWCimGXEA+iJXLBRPLAbPMLMyBLCMLkJYcLkMLYzBtYmykYGZiBmRZIDEgujK40gCYmhMDCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0xlbmd0aCAzMjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0xlbmd0aCAxMzMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvTGVuZ3RoIDM0MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9MZW5ndGggMTc0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDc2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2MOw6AMAxD95zCR2h+JAdCiIHef6UptIv99CTbxdFgWpECt8DJ5D6p03LPJDt8EJsh5FcbWrWuytKaDIuajL8N391N1wumOBfACmVuZHN0cmVhbQplbmRvYmoKNDYgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgMTQgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCAvc2V2ZW4KL2VpZ2h0IC9uaW5lIDcxIC9HIC9IIDkxIC9icmFja2V0bGVmdCA5MyAvYnJhY2tldHJpZ2h0IDk3IC9hIDk5IC9jIC9kIC9lIC9mCjEwNCAvaCAvaSAxMDcgL2sgMTEwIC9uIDExNCAvciAvcyAvdCAvdSAxMjIgL3ogXQo+PgovV2lkdGhzIDEzIDAgUiA+PgplbmRvYmoKMTQgMCBvYmoKPDwgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTM0MiA+PgplbmRvYmoKMTMgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTYgMCBvYmoKPDwgL0cgMTcgMCBSIC9IIDE4IDAgUiAvYSAxOSAwIFIgL2JyYWNrZXRsZWZ0IDIwIDAgUiAvYnJhY2tldHJpZ2h0IDIxIDAgUgovYyAyMiAwIFIgL2QgMjMgMCBSIC9lIDI0IDAgUiAvZWlnaHQgMjUgMCBSIC9mIDI2IDAgUiAvZml2ZSAyNyAwIFIKL2ZvdXIgMjggMCBSIC9oIDI5IDAgUiAvaSAzMCAwIFIgL2sgMzEgMCBSIC9uIDMyIDAgUiAvbmluZSAzMyAwIFIKL29uZSAzNCAwIFIgL3BlcmlvZCAzNSAwIFIgL3IgMzYgMCBSIC9zIDM3IDAgUiAvc2V2ZW4gMzggMCBSIC9zaXggMzkgMCBSCi9zcGFjZSA0MCAwIFIgL3QgNDEgMCBSIC90aHJlZSA0MiAwIFIgL3R3byA0MyAwIFIgL3UgNDQgMCBSIC96IDQ1IDAgUgovemVybyA0NiAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE1IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMCAvY2EgMSA+PgovQTIgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMSAvY2EgMSA+PgovQTMgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMC44IC9jYSAwLjggPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjQ3IDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjkuMikKL0NyZWF0aW9uRGF0ZSAoRDoyMDI0MTAwMTIyMTMyNC0wNCcwMCcpID4+CmVuZG9iagp4cmVmCjAgNDgKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMjA3NjEgMDAwMDAgbiAKMDAwMDAyMDUyNCAwMDAwMCBuIAowMDAwMDIwNTU2IDAwMDAwIG4gCjAwMDAwMjA2OTggMDAwMDAgbiAKMDAwMDAyMDcxOSAwMDAwMCBuIAowMDAwMDIwNzQwIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MSAwMDAwMCBuIAowMDAwMDEwNzkyIDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAxMDc3MCAwMDAwMCBuIAowMDAwMDE5MDg5IDAwMDAwIG4gCjAwMDAwMTg4ODIgMDAwMDAgbiAKMDAwMDAxODM4MSAwMDAwMCBuIAowMDAwMDIwMTQyIDAwMDAwIG4gCjAwMDAwMTA4MTIgMDAwMDAgbiAKMDAwMDAxMTEzMiAwMDAwMCBuIAowMDAwMDExMjgzIDAwMDAwIG4gCjAwMDAwMTE2NjMgMDAwMDAgbiAKMDAwMDAxMTgwOCAwMDAwMCBuIAowMDAwMDExOTQ5IDAwMDAwIG4gCjAwMDAwMTIyNTQgMDAwMDAgbiAKMDAwMDAxMjU1OCAwMDAwMCBuIAowMDAwMDEyODgwIDAwMDAwIG4gCjAwMDAwMTMzNDggMDAwMDAgbiAKMDAwMDAxMzU1NyAwMDAwMCBuIAowMDAwMDEzODc5IDAwMDAwIG4gCjAwMDAwMTQwNDUgMDAwMDAgbiAKMDAwMDAxNDI4MiAwMDAwMCBuIAowMDAwMDE0NDI2IDAwMDAwIG4gCjAwMDAwMTQ1ODEgMDAwMDAgbiAKMDAwMDAxNDgxNyAwMDAwMCBuIAowMDAwMDE1MjEyIDAwMDAwIG4gCjAwMDAwMTUzNjcgMDAwMDAgbiAKMDAwMDAxNTQ5MCAwMDAwMCBuIAowMDAwMDE1NzIzIDAwMDAwIG4gCjAwMDAwMTYxMzAgMDAwMDAgbiAKMDAwMDAxNjI3MiAwMDAwMCBuIAowMDAwMDE2NjY1IDAwMDAwIG4gCjAwMDAwMTY3NTUgMDAwMDAgbiAKMDAwMDAxNjk2MSAwMDAwMCBuIAowMDAwMDE3Mzc0IDAwMDAwIG4gCjAwMDAwMTc2OTggMDAwMDAgbiAKMDAwMDAxNzk0NSAwMDAwMCBuIAowMDAwMDE4MDkzIDAwMDAwIG4gCjAwMDAwMjA4MjEgMDAwMDAgbiAKdHJhaWxlcgo8PCAvU2l6ZSA0OCAvUm9vdCAxIDAgUiAvSW5mbyA0NyAwIFIgPj4Kc3RhcnR4cmVmCjIwOTc4CiUlRU9GCg==" + "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNDI0Ljg5NzUgMjc5Ljk4Mzc1IF0gL0NvbnRlbnRzIDkgMCBSIC9Bbm5vdHMgMTAgMCBSID4+CmVuZG9iago5IDAgb2JqCjw8IC9MZW5ndGggMTIgMCBSIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nK2dS49kSXKd9/krYkkuGO3vx5IjiS3MbsgGtBjMguh5cKgeAuRQIqBfr3PMPOOaWVRmZVb3AE12nY6615+fm5ub+f3uv//h//75xz/84/e/uv23f3r57vrTj399ybd/xT9/uqXbv+Kf/7rl2/f4508vCX/6y0sr7b727PjDT9cfytz3vSr+7Sf8zv7pX15e/vjy3d/jAX/FX/n+5aWOext9lH6r894bf/WXl7LmHc9x6k9WLbPc53nk9QSrnhcVfdGfUGQU/75QAbyWykubLOzay77ZiO2ezotffoUW+K+Xf8f/Tbe/S3gW3jlHT6uXMuutlPvutx//8vKrH16++4d8y+n2wx+lgX74/ctvb3+T7in97e13tx9+/fI/fnj5zYuU42XX+yhjr23fb8T33r/Kve2W58h1tI+8vzy/P9d9r30kV38jvvf+XNa9lFrGTK33jxSgfaEAq9/RhHm6AlziuwWYFa8stc/d24cKMJ4LUCr+f25lZDf4jPpeEUre94EftrVGHR8pwvpCEebgi2svrghGfbcIo99bTr3uOcv8QBGyG4fmSbvghQuv2fcyVy7vPebP//b7//PjH35/++cfb3/9z3/+j/99++u//PmPf4suuWc+4W/+8/bb7//n//vdc2WvmdowfDBy50RlK0od1S92eb33vtkUrd1b3SNh8qHW7zb5e4VAI+NppVZXiEt9vxBgTQds+iodvf92IfCz9wqRU7t3zDrMeFsKI79fjJzSfeaZMWBra++Uo7/fGBnvHr3M1n05Lvkr5QARVu9rppJ7facc8yvtMVCfnXvKvhyX/KVyzHu55T7uezfgM+9R3ilB/sq4yGvdd02l+9Fp5DeLAHjlWusqeb43MPNXBgX+OoC1U/ZD08hvlaCgRzArcl0ZaHyvCF8ZD6X1e0lzDj8ujfxmEVomlBbWp7rWe0UIQ+Hfb18wBkrPmAg3kP5e2u0//nD7X7d/u5Xbr2+QuZjfM8bbWKPMjjq0cf438V9m6mvhL5Z9+8fvb96qMQu9ZRFetlpKQD9VTEBhUe8wK0rB+6kOlI8d0Pd9llbXFHXlnAbUgQV8jK4w25gbIs47ltSJfoNac5qND5ioAmyIOUQtHdOMKpCOYVa3qC0VtCHUDeT1koqo+Gvy21XBqlmHvK2Orc+FmVQzFkepWl0N7Qh1ZxQ9jy1Vq3ujh6iyO+vqUjV02JTRvfc9t5GyVK2VhYdAzaliDVtZnttaUTihNveE8japXOt4QqGMWbZn6Ulq1zgkq8jtvvHsIdVrCz2lMukxVpX6YZZneTQWtIm3bKlfZz9PkWF9tZy7FKTXlAepkLFu4wm1SA17ayN3kRtMKixuUkXQKrUlMv4wJvpd5Flbl1c2TM20lz5jzSWPaBiXPe8pVeS6o8XrCQ2JRpMqom37ULndax1lSxVHxUyQUvfFpRV8ErmhMzk08iiwpNJZ/kbfsOtEHnf8p7mkjmikOaRVJ9fwtruUb6wlPMyTRgLXAKogcKlSkAl7ee0ypYozj6Y1Xxkcg90iak2jqtrvC0MpSR0nfppU3neiZEgdZ19bCg0zFf28i1QRIzBtKd2eeHviHyivqVUsKaO+peikQJEBUZE7Wrg1HU94SZ1b5H3vMGy0C1bZTSpDsDX0vxZ7tSp1IRHBmp2kiguDL7H10EGYJPWoM/ecRe2cklzaKWO1SirD5qkTBoXIWEJ0t1HrPcO67FLHjWFUpdQgE5Azi9QRjVtlABN6bMkldcSgwOwQGZhNg0OOMqZ4Upm/wSohddyYlFrsXvD+VKfUcaPuMvwKFjbMDLSPyHss4U/hkjg5fvc9YRbqk0djT8MiFRnv71LHIWMrlSFyPTOaGyZMc3SyyNjNpCnyw/ykPDDiZcX5p5ff3L4F0lgewLQFpoHVE5hOvWEV29xmvEdmELbtjH+xYIaIfoPV5cBMFfVY2YGZKv6z9P4DzBRrWTs7MFNtoG1zYKbaO2DjwEx1oPc8mKkuNP12YKa6QZnswAx1YIjIGLnATLXChvZgpkoLvzswU11ox+rAzKpjpPbqwUwZ9RjNg7lzbueWtgcz5cWJ6cEMeQPFpXgyYxSi0lkfcpEZMpoz1UBmyBu/ysuTeWRuuXIvnszoM8yvrcx5kHkQpAnT1KN5LkxMmCnNo3nj3Y3c9WjeS3AyPJlzKtjEJKxWHs00x/HuoWvExWbsvYAUQGB4OMMWQPfRfvB4lj4ZQFz3fMZijL4aKJEDNFr1zoVJl9+L0DmDbxhruXlESyeuIcPKMJq9xX7OntFoHYysJvg3jMZjMZrylIY0kM5roOx9SZcaSvOvLgBlLY/pgoEGY5k0c6AuKCQNyD4cqfmLumE8bI9qbrMxLYei8GI1egatXba0gYE1dSwEQiwDa74IA6wLIQytqa+OPtse18AGSo++7Z7X1Aemq7baBWysuRgURJQnNn+P4ZezQzbbJlXQtnhmF0432ESleGizUkAausBTmzqeV0b12Ka+sRkXnH0zt9HAAIWiGtQe3AZiFmCtsv/lXYRPKR+azjGcaq8KxYvhosL+GY7hVIFtZ1tTQ4uJSXQhXNS5kkc41YWN9HAIp4qWTR7hooIWxSEc6oK9LVuBC+GigmXNIZwqRpkMygvhVDGOhUEXwkVdTYH6QDjVSueeRzhljN9UPcJFxujKHuGUe5sj2NaUAQ01ly+Ei7yOPXohnDIMqlQ8wimjoLrGXAgXeenG0CCcMmb16A7hUNH6B78G4Vwd0DTdI1xkdGLzCKeMkV89wqmCENUDnCo4qg1y8RvDBIvOVAv4wjfkiuGp6+VFb8hojbGWhzefjU7QrnmwW1Q0djCuKe+uvXuBm08myroH9+SySGvNgxsyFjoU1YObD8F+twRuU+5Y06rHtshtKIEuaos8dYEy0KaMVVtKcjFbVOyRlkc2ZaCieGBL8dDu1fNa5J0CrqluTPZgW7O/UlNwGFhTxkxUal6splzQTMWjWmRQNtjWlLGH1vXnFdQUURMZqIbTMm6qLrQG05RHyWICGkpTnmm2YFuLvOsYP4/RS8xqFguMxmjGnMmcb/yDOEYwud5l9Coc1jQyLKNFnTC0HaOpiq/RMVpUjBoHaYrlWIAXpEXFlm47SIuK3ex2kKYK5MgguCAtKgyI7CBNFcVK3UFaVJjk20GaagdIhoO0qGj64iBNdWR1t1yQFrWv6AChjH1YtLNF7nsHO5vyysqei9Gicph5RlPeNbg/IBKXrXlCU874t+0JTbnq0mQATZVu0+kADRVTYe3qAY2WxXzbKdjYPI5Kc8pW0wAaMib61gXuIrS8se7aPaKXmt5K1wvRlIHInT2iVe4K9AvRIgPGwf8hz85DdrcXokXFMhkQLTLZ7Rktxcag2J7R2n5DF6eL0aw7mmoGBwhlWq2B0SJ3faVhNGXo4pMzjBZ5KjgMo7W5i3pRHowWFV05PaMpY5+oboAL0pTpaAseEJGBgOkpTXm0LGPHUJoyna/VU1rkeRaii9KUVx0ytg2lKQOq+uuL0iIDvMVSGiImoJo7htKUsRPLw1Na5KlrsKE0ZTbJ9pSmXLN2+8+gdD/uj7Hppk6vzKabWnjdSM/3KI0RVzBalndTUwVum3dTU6UrbDpKU0VDL+cNoYhNzvCUhloBFjWPH5SmClNTLL+L0lQxZsU7dlGaKhp/ezc11ZaDM4Qi/n/3zhCq2BALUy5Ib3mU+jcvSFPdsH28lxpqA9FXsKQp04M7PKQpNxj03UOa8ihD+X9RmjKG+jGZH5SGjNrXGpwhlDGCAqZ51p+xhwqYpoyNVame05BXSkuXiwenoW7MgBEM6d04A2fwUkOlT1HNSeMKGYR61+JdmEbzVry/FY9pNhksQbXYrCukoUmAMO0E4woZ9OLpGmAcIWQzLEdduowjZHFbhddnR+osi347DnbjCOE6NcbKwVedMeRgUOj+znpCoJeGXdv2tKZeMdFa9IUs9nPqB8zGF4IexZxSMl/AFn22Gn0hosPUa8Ujm/pIqanb9cFs/fnUEWOgLTpHXaC26HQyBmxrMbtuIAy3pVr0cw8PbtErB60ntzRPTzMHdEtzJszGwG52C/pTTycMvKVDwW7nC2Hvt3LOuQy9Ycrix+Usihe+Ofg5LNXfffE7N+6nMYOXBzh1bBlK/5m+kFef9VwgeK3q/yj4D8fi5q7kPYC7k/6L4CKD0MGhTXlUNL/3hojMgJNqIU51okLFHzZSxmRSi+DCuMiYwr07jlPeGRvt7UAuMgONHMjp+Ezo1FwcykVeuhW+UE4VvaYxFRfLRd6tVe/ZFp8qRLX4HjQXGY+eAefUq57IGpqL2nNawTGiOs0Nz3PRseWfwbstb8WMVk5dRNeKYhvZPdOlJ0BmPai8oM567DyOtX9RXRzO9LYGrJNMnKxP5jf+a9FCGv9IJ5HLOWZ8cH0QsdgThdNHzDBQqexw+jhY53Gs3gvrAzM2HdfLBfVB//M6p34X1ek5HtxLeqgP8V01dcE/mD7YaNh5BKQP2kqYAdsTnTLerf1wAZ3HDB0byuV5ThnzPgWcDzYZHjM8zVUexyh/wJwPKe14FS6Wa0mKbI0MyokzDMngIUGLFEYTdQ9yHmystpWbF8c353w7J3kG46NLiEIL5jeX1t5608NDg/HBg/iResT44KkE5n3waechlmFSQ9lgXM6NdtOTAIPxjtlXSvbHkCwlrOpSnzheZRMeKY7Owspaa6Q4liyMIG0xQ/EqR1tZVsqf4y15hXh7ChcRtfLM5l2MZ1QTY2V7lzZMCiy13N54jFdxiw7ZZxmM18x1X90KF8Yr9/5bd4cG45AbZ2bAeJVo11K8Zxsb/3viYZ93bVOG7VcDxqECLTXEjVCGkT2HN8kpw0DO4YCSmEsbpqwPHaGMDu/HSfLgeGX0HkZ7CxyHDhOpHVf2RfLKtY2RdoHkVYKNz3MMydH1CYuK0tCQHHpGu5Xg5aZeYaqMYJ1Tx4tSD0eV1FG/nXogOfTJcEDvSKGM7k96JnehnPrmOrE8y3koh2XlOG8umFPHFOx6cmhOLKHDvpvqXDJmOnSsf0mPVI2ZzkO/2pvuDYyZLiHN6ZwkGEMd+sIY1wXWGOqYcgl7+eldKpTRiDlSnTrI0mo8sYQO1OiQt4Y6dJRranXtmSWmBYqtDgpjqEOfFdbBDIY6dA7BFdhOHYPneHuNoY4OzQkrcvB/U8eEnjkY6pUxWr3k4F2h3jBlZvCBy3gB0yPgIU9MsnOWeQG+8jiwrhwBXxny8XomagAPnRbcE+ChwwwcKRxaUl8EeTi0pMnMxhnOy5LxosbdTQ6AxzK0R1l6ZmAQv+To/QTfGMSLx6eN6A+nPiuq8rOCTWyoye37l7c5XriIYQ1ugeMYSGCmFMJwvCzZRMisNxxH16IR1ca6OF6kWevy55OEC8o2xNK3HOepAeAdOY4yoVnk0ZbjDP0famJ7kIMWwf1NFWRTX7nlOBAMw0EKYjneyfG5vQdcwVZ28K4IeEYpIdSE8mZbBh84Jxy2tL2HKECZWDQmIsUxI/aJq7AQ36AdjbIIcQxBWHDqxTYQx0BGs/UUIc65NDGdR4A4dBjpGgZlII5/w3/auvcwEG+Mjl7noNBAvDEYADvmEiAOHaM592CSg5w8e5o9+lqgYwWqvQeIc8qPY/UahkPuPGfageHQ98O3ZRjepAv3Ds4WyBhVykbLcEyeDH0Gxzh1zJequmE49A17cEdniwTBPqIAL4ZLpGPSwyXLcIlkw98N3nHqLFiMD6RO9qbIcHQQqNmSDzyRfivrOE8Mw6HDGt8KTcPwzhPmWnSpMRAHRIAKdXlaiJNXCfDtAeLQ0f0pusnp90gMhhwB4p1+66GRDM5KZyZCPfi1Vjp+UrClHQ7itMbHCSz0RnpNu64QeEId2O16mGsYDn1yySqB4dA3pmH/mWb6fPWvvDgHeZLwev3f+1Y6sbISg0kc3Tl3ufR4uGOaYXRNHzyoDk09XLvQ3uiG32qNGrRzwtObmT3ahQN7yRbSoF1+PdUyNmjns8uhgEE7Ze61ffwJ5YqalOBrYakxSWTpNmyXbVVVl7BhO2W6fIKvhZxaeHa00Rv3raMrHg3coS/OuBbgfhpWgWToTt4xXjoEolDHmNgaNWjwDh3ySk94b3TD5xoCvYWb2Omu4EOnjqF5DmgN3pvE/cpgdnjnVqIfB4qhO/1WXa0sR3f6lpLGCFq4d3nPk4UOnYHdugZ5uK9W1Bh0dB88ZddTHUd3/NVdurqcAt0x5bXxHd07g9VzpPtgUFbRGBRLdyzoKMCThc7VoOtpnoP7ZALhcf1auE/pBaWghfuUXeyTgQ7wJYxd9f5auNMQ37WFqMIsyQd7hqhCWVPQehpfYuBOrtZX14mBO9aOzM1giFKh3iqP6wPcudasrsaRhTv0jfLUEFbIYVSwvajRQofOg4YVPemdQXEMVohwzzwQ0Vw5A3fUmxwKYYXUB+ydFV3pnd69pL4CR3ceaq+qS5ClO6cMWqf/PLon64Q5QYWwN+ieOajv7+fssHlhFjGkwuGdm20ebPjAQnEtrLzF4LBOGOaQjuTDVsQl0s+st8Y7T1phYs5gvNO51UYAPIz0NTR21JvusDlrDXxnih0w92S7o62Z2OeTd8T+BxXV2WJs9yIRwdF0L3JSMaLpzvPyWXN0pVcergNxIYFH9IWqRWe6PCcfD7M13nmUPk9GjbXeoY+lk85Z74We1lGjM/3sdWK0uDTN6vMsB8YFI1ErqUcXDHoDE+HJepe0tnwCHK0LBtMes2yFkHHqPNIeIZ5FnWjrRJ5bFwxgiRHRg0td/GUJI3YGwNNhtmpWj5N1wXD4Tg3KcC4Y9sQ8ZxbGBYNRgZbVM2HrguncfGjSgXPBMK57nNFgXTCDmRY7uNZlgzdaUpeH98CgYfNT2Dg9LaOo+eI8MIu74ROBYj0wW+KwNIjOemCYHQF4R8AnRr2MFjJ85DTwddlygM8AbdbNigM8kFfGAbkFvHhZNXjLAZ7WYTouFQN4mjblBD8avtPESLXHKBfxqazeNYTGemA4XFafwQODH8CM29EDw8UVM3fswHculpjaGsRuneySFlVy5LtgNesR4Cf5rmz/7Q0dj1/c2+13t3T7/YtN0Lx9W4KmSwk2sOdBDEBegsedxzZYd5cPUaQ8Xkl9wZ5HUyBkCx73wbDPrKaWgT1k7knEMjO0Z/YKANA87QmCdLZxhvaQMXDHCgeng5u1MqM1j5IylNaHk5/zmi1HUIb2g0MylxyM+cGYBLROCFbM2gon/tzQnodT2G7rxDe0p45fp+hwlyydkWWQWdpTTz2HmEV5bT/ne4b1LOXK6clTw0rB3Cshrpw65sHKPjdImgaDJcTDUJYA1ehtZ/uW15XQoJ7dwXjs6KjhKSkGg9raBvWDc2usJ1t+8OgmndhwGxTDvXw5YfEG9dAfWSQW9UMibE/XXqjnyEPfzGjLQ5+o+I6eGujY0Z70I4N6Duyaju1vWM/jS1RW/c8+RSgzRyGGxfAAGH39ZMxzmjEfdATWD0kPGTWynpMVEyOyXqY25nA05nmAi3muR7KG9YMZSCdO0h6n0o0w9wz5nNQTfr+fHDWbx15bn2Nt+c0UkKFnCNaWB3Xwd9sXjlMxSHRiOVueKY1rnYPThy2/eYat6cDOlt8wrqoe7DhbnvU+kdXOlicgVq8t2vJM7YScfynW3/KLc75/OM8Trc8JQJ+xAzwKiyGWd4iMwbQASaWehu9QFyO1l+P7XHSU6gQxfJ/M+ceeM5yoTubWN3UoGr5P9f1XH4dOGcNpdR+ILjI4Gbw1UzLESzxRpdxgdARrfkrOdw9hjiKvV6/4BXjKJ6rK8l3krfdVWL6LjjaJzhp56VbTxfKdutifge9TstuPV9kAfsoZ10laNISX9mqpRGcNdeZKRmeNNDvaJnvCs5NovATCU8Z4j7Y8e7oJPTzgmS2KJlZCGsBzwODpKeQPiQ6Olxj1SEZXRrcEwHM4YvikEJ8uv0f5UnTWsDxNcOMAj+FWeOAeE0DXYujUjAmg2EQRAur6NoAvneMsJoCSNZgE6tO46C4IwhKtnLroTn33dYIbTQIoqd+P39vkf1JG16yY/zkkLadrlv2V/0kZa1ANhrzqOceYR33M2D3EPIrOgRATQKknWIvBU6PF7PME0VwJoCcN9ikBVIKcwJ/q6X5a4Ti4TAIo9Vo18uJKAJWVElvGECwjbbzXiH540RezVjzdRR9ZrV2bAEq91fwtiftvW/JXzue3ZYNKHGkSCjnQQ8aUX8I1A/qFaTMBvBA7A7kwS9OTfvFMEyzYnvSL0ZWYaMExD3lgaoSsUMqzZI32NqSnPJbGtRnSL+7pksakGdRTxgIt5y4G9ZTrqCugnvJr4pJBvcj5pK1fqJeH9JOCaFgv72zl6dRVioiOGoH1rBFWrhZteeodK1L03EjDJA27sKxnO85aFXOG9dTx3BrDINkdsM9nDINk76Gc0THPrsacX9GcXxKIpLUysGfftMNiw3rJh8IYCAHuZO7i6Wdk/WDsCSZVuIhFj81nj7Z8ojHRZ422fEpM+zrr3YV68Bez89xZ8yA9g/AL9+oe9BgowF2P0ZCbMbm5Fk95JgOg2GoeXJjHjysjikIwJOTW6gjuGqq8XiN4a/gMXjYYvPGUz+UvhvBU0X96X8oD8FunrZLt4jtlTPESTllFnsdfctFdf32iAy+4y7P7jvHsUpCegg+eKqZkC8HsUhcsTNtznXLjcuixLg0yTpzQK9Up8jLAkC0qbbqezlYp16LXERmkbxllZYc8JMo8Lf6Gg9U3gX6ljt6+LXUUcwTPZF5KALoY9DUHy53ZDq1qtoMFeiUw9SIdA3SomKbhAi2R61zqcTdA5zNACn+Flsgg8RPQMWe2Fs/ynGfatFwDz7k6Db3xwfKc846mX+A5vSRpruCJp8ykOJ/sLzI426Nvhi21h0bkOp5Dn6/+DctzOlVmzzGsnXptGsjleM68k3l8P5bn9BX1ucK1LZpI8gVPvOTH1LJjMKTk05Sszzc8L+zTWkJcu5r64FlI/Nc0nnEeb4lemcpaSiQ6dWwj4+0ty3p5DNBRHIyC17iYi+gsJuNHYiwks41WSfF2LeodgDlWuk1awva6xPxSWY8ws6dnOv/imq9B9TZnKfO0Q6nicpYwFlt6vr+FKVTcl3mwU8bU06Xa+mYwLSbDZatHO/tk4385+ma4E8JfKtnRnZv1jpWzh+tbuLffTAnYnu8SYshbmMJB6+DVbVPjPg3g6S9jeFsw3umfwgKrW4+L8HQ3pZxycMyIV6mpo9IQnn5kcD8HwmtqQdP9wivhJbEgpxIOWOmAWufCCEN4ypieI9zaQhnTZ4cQd8pofCHHL0X4K+309m1ppxxBDLDI3vlemBUE8ob7EQvTXMZxPF6ERx+BYLBbnfOdYxbzp4Vwd5iZdKdrGKIhPGDKW4PkdMwQfvPGu6wuREN4zJMxmqYdGMTDzGKH1OB9B79Z1B3iJJkwWWOUJK2srUGthu/Mo81Zb1szfN+8/Qc/n4HveMnkpb078H0zFjQvjao2fN/oSh5OjcD3zZC2cfYDlu9yS1puMZBmMXAYPRRPWhfRvYfy2vKdbol1Qvgs36cEiyR/rQtlYH+NGOzOewNq04ng+I6SJWzOYrA7dLzzpNdavg/u4Ve4OUDYWtu5yMzyvdMVt0q8nWsx5J8hM5HvEgDb4zkrN1GA8fQXvMgeZ4z0RPcmp1yaX2Xxzpzcc4+BpbskT6QZ7g+QLU6p2pQhIxWQzTsGScqKnjVEKmSk8lDoCe+yFZ8nd99npGLwp/WckZrAshmDJLmE8qaWiHfGcnM1Kx7vsoQysTX63rmEolo5XPhCvWGKxtsUZW3trZybYExGatH7b4MVf/Q9ou8dHVTWuX7x4XqXOxOGek6t6136/jXa3wa6856ec0mMjXPnKQzMsuh5h06b5pd0zVzJqbdvSk51Nw4bzOfBqy/L9gE1lCe9jwHzkDsm83KeGaq8HS4HzGeGrS3NJrgwTzmlrI6uC/OFWVeMnfe3DFBGH+gtNRfmKVdsZLK/aIAyJuNSX8sD87yQjolHIT1V7qmDxdG9E54yqn7yiB6kp1wqRk0gPaccdiU1emaoY0U8wSQX6WWKYlmNaU1ysXM+Dp4L9JDofz5+gwv01Ec/wcsG9NSxi1czzYCeeuonzdeAHnOKj0zbX45LudG/sz3oqaexTiTlBXred4dZrzHWBvTUK4yeHrKaCDAwIvdgyQvY6AwOl8RQ59nxCCE1JXGSnkPlC/SUYcfmePtAQb+h9C3cE0M5swHDMSvKJBM5BNRQTgPLe7gql7TGWqqx1NYNz3xsmjYhooZ6aXMFDw1tLFi89dyta+5hLLwPrYxwyEq9vCamWT883sS7z2rwwye57q6mkNJEXXIORiA974ngChBJv2nJdzXjLOlZcab5lED6zevb6U0KpN+StLrOJTMX6TFTMUJ0S2pJr0m0JV7vxY7gVXnTn7JuhsOLSexRvxnytk58u0H9JpXXSYk1rN+M0zwH5Qb1tM9S10TfX8xr84iefAqo+VgKaylLrrrJ3g1PGeMhxNOIiumXA+sLp1AKFzOKCqOx+PNWyglFbP4+GZHzSf4zrC+MGMt6LmVYTznxjNezvjDD77i+DeuZx7X3DFd/idzayXG6WF848bcuaIb1lJnp4eMnKXd+iKYE1lPHYptCRA31xoDFYNVTr1wCg1UvetV8dMt6yLyrUO/8NaynzpKFkBrqbMUenPDUeU1ZCclPpXAGjhTuahQZnC0hfJL6ghV9Ymcu1rNkjFAIyU/UB5bJHIx66lioaglueOqSdhZiaqiTJTlkP5FVPDLpIfuJemMaUgmwL3ogk318PC9yXf31unoD+yIBgurVtrRnv2Ehb+GqGVlRW4mw578u7JCfElgnX9vDxeiS4tRaO1HzJnhSjsbOjenGqmebcY3JwapH4fvGi0JATZG7PMeKATVFjEhdli3roWMDXltMfZInbs0ztKzXy3LbjPfMFHF9j2jUc4TAOKnhjnTmU6I4q8XgScYHg+47XjPDMHD6JrJDPQNIc+ol3k/ASM75WBjcDQVopjJi+mrnQXLXDG0XUMMZtqqMy1+K9TaX9R2gV949DrPZu+FFRv9EJ00VI2p074YX+dzxcwGdmcM8WQzGO+WTAWN4ThVdUILtTjnN2ryLpmguZwpXEhT9AlUPAZIiwzjY/r5dkVPX1d7wvPI7Riejx/Cccqdx4HlOmf7hEEEjesonatDwnGnWs2kugOV5lVCrkz1qeE6dfRiuJKCOrbCGBligU4cBGT9rIXqjhyIAXdLBXxcGA/TKrwgMvYHbAJ1yXyft0wCdes16QmeBTh3tGq9Qp77mOQOzQKcOSyveMCM62nMFN3yRXF+sDOELF6LzwDxcwys6rzAIVxKIjk1s8zE0lAfvLgzprKK33VaMoaEOBus5rwG65O5nNYCt+S4NXs5NJsZ8p15f7+w29jv1VJ+CJKm3SYd+sN+pt5MVa8x3ymiz5q97pIyuOjmul/VOuZ/zWxNEQxlmWEx3ol4Y8xhyWUXvu7fgphG9nJgYE0PD2xT4KYHmgS46Fq8VL1GvjLKa5zZgE0PDW1RmPVuhRwwN73wgHLYHepG7Hfpa4T4C0deJSLYxNJKh8Hq4bWJoqKPR6i9pvE/jm/mWxFYA6K57SEd6qrmsSPou15yvkPgkMj860h3quwTjzmi7Uy7Hz2lY3yV+fzaf+UR5rJ4l1MywnvJoYwbbnTJGRwt+GsqFX+PwrO8Swq93BhrWdx5ztNX97eoij67ZVob1lJkoGHKfRC/nqgTLeup0UYd7C4ok7K1zXa1hPXWQQa1Zw3rqPdf4BSPRYUukyPouV1j1Gk5ci3B5lOiRF32qk82gnupIx49iUE8dmDpXQV6ol1z41uNV66KLfzCgnumM66SNW9RTZwR6tN2p95OTblFPHZMpXigmejlhbxb11FM910deqIec+f2EkPok+tgxHF5kpryG1FbR6ewOqU+i87KKSHrqzFWNnhpeOMA872C9i44RtaOnhjrWnRQjJqnXfS5MuFBPufBMN7CeeqI3IsCeOak7nw94GNhTn7S7A+ypYzuY4yczNLc1txAPL3rZzxGT1NE9OZy7UqcVMsPBq+gAW3a5T6KOFVOfRO713NJgYE+dlyJE2FMvLa2Q+iQ6Orl/Q2rrm7BP1lPzLXmuhXkfAHUJbvkhN4qr1WtwTxnVH8FVM3Qn6uNrRC1dsWlwT5mXkAXc8x5AdFX2AZMiTzSvz30SGbuz6QNsRMa8Wj42XmRGVfjcJ5HTIaPBPXNeVk/hnvZyUmFGMO0pw2RTo83gnnpNMfdJ5McxrqE9E2o2lofoladOWzTE14jeW44XAYuO98/oqpGEnaanepb20MeuLX4YSfSZ9Xt/BveU2349lr1wT7084mUu3DMfiAGQ4UZg0ZlSEF011JnEGA5giyTGFU2Ms7iXvKKH6+XCPe+PhI3aIu4Zow0T+An3kgFYz92fBvdEaj+t43FPv9cIrho6dfM+aUj2DHbSM9DTjBE2c+oNLeFDG9QxlvSsx3prgBPU4yRz2hAb9ETaen7gQmwGh2/u8aIaTDDeRxHukqTMuPMWIiipt5JPcIzx1kzeePd69Gu8NZPnXeucSxpvDfTBG2Cjt2YyUjSdTyoZdw10cYXHuwymHF2/cv1y10y5/ehE1Bh3zWSwWKvbH8JOxnKN83ER466ZzJSsGuVq3TX8IC/7PJ7CTt50X/Q7FNZdA7jtdq5PPMDnHQXp8aFwT+Uvfqj8y98ex9O+9AXzv7z1BXP8/hOfQXe/vh7z3tO/+/uq30H/NT/djn/kJszzIfeXsuWTx/INhsGrjfRL6JkDbBrtJ2hDP/D+0BpG7RCF9+95hQ4bKj++PDT2Y12vD3uI/Xwf/vF87DdO+R/FuKQfbYkvGb27+WWxIBe5Iv2Iry9y4muR+NyH/Cj9T059raV51aMtvtSOP/JD9L96/RC93IGB8fX87dqPpka/YCQWhjydwvMmVuZmcSzyjDXKP71UrkrPMkZFktF+hgMGA/7dfeOetzW8/sXCWxSn+yp4CR/btp/yfevbj1/JCbQ1E19ifarZQ/Y1M/LnakZDTnvqzZrlL9fsW/NhbCX58bn03H0P2VfSyJ+rZFbz7r1Klrcq+W0x4raSicvEc08+ZF9JI3+qkjyH1sn9diXrW5X8tjBJU0lGpvXniXjJrpJW/lwlJezp/Z5sb1byW2KEbB3HeqwOto4P2dfRyJ+rI9f6r0zJ/uZo/aazcVtJXqH0PCUv2VfSyJ+rJG/P+sqUHG9V8p1DIVuTykvcnrvrIfuaGPlzNSk8IXq/u+ZbNfkmb6itI6PFvjDtHrKvo5E/V8ecv7r+rbfq+G1OAFNJfqr2edo9VFdFo36qhkyg+sqc27aCb9wA8GGT5iUa141xzNGimeNJRW3X+oIqtdWa/va1MF+oMcPC80dNmpw+UOVPGTimnta+ueppzZurntG6+Uw9P2Lg5I917cfMnbe71lo7V5WtsXNVOdo6n6nyB8ydXD5U5Q8aP29X2do+V5Wt6XNVOVo+n6jyR4yfXD9U5Q+aQm9W2VlCjyo7Q+hR5Sc76DNV/oAplNvHqvxZw+jF19jaRVeNrVl01ThaRZ+p8QcMo9w/Nq4/Zia93cnWSrqqbI2kq8rRRvpMlT9gJuXxoSq/YzSZelmb6aqXNZmuekWL6TP1+oDRlOeH6vVpEyoMXmtBXTW2BtRV42g/fabGHzCh8vpQjT9oUL05eK099aixNaceFY7W1Cfq+wGDKjuL6jcv/x+HgBfVCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTAzNTQKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTcgMCBvYmoKPDwgL0xlbmd0aCAyNDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFJbsQwDLv7FfzAAJasxXlPikEP7f+vJR0U7cEQI0tc4u7ERBZetlDXQofjw0ZeCZuB74PWnPgaseI/2kaklT9UWyATMVEkdFE3GvdIN7wK0X6kgleq91jzEXcrzVs6drG/98G05pEqq0I85Ngc2Uha10TR8T203nNDdMoggT43IQdEaY5ehaS/9sN1bTS7tTazJ6qDR6aE8kmzGprTKWbIbKjHbSpWMgo3qoyK+1RGWg/yNs4ygJPjhDJaT3asJqL81CeXkBcTccIuOzsWYhMLG4e0H5U+sfx86834m2mtpZBxQSI0xaXfZ7zH53j/AJVPXCYKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDc5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM3NVIwULC0ABJmpiYK5kaWCimGXEA+iJXLZWhpDmblgFkmxgZAlqmpKRILIgvTC2HB5GC0sYk51AQECyQHtjYHZlsOVwZXGgDWlBwMCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0xlbmd0aCAzMDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPZJLbgMxDEP3PoUuEMD62Z7zpCi6mN5/2ycl6Yoc2RZFapa6TFlTHpA0k4R/6fBwsZ3yO2zPZmbgWqKXieWU59AVYu6ifNnMRl1ZJ8XqhGY6t+hRORcHNk2qn6sspd0ueA7XJp5b9hE/vNCgHtQ1Lgk3dFejZSk0Y6r7f9J7/Iwy4GpMXWxSq3sfPF5EVejoB0eJImOXF+fjQQnpSsJoWoiVd0UDQe7ytMp7Ce7b3mrIsgepmM47KWaw63RSLm4XhyEeyPKo8OWj2GtCz/iwKyX0SNiGM3In7mjG5tTI4pD+3o0ES4+uaCHz4K9u1i5gvFM6RWJkTnKsaYtVTvdQFNO5w70MEPVsRUMpc5HV6l/DzgtrlmwWeEr6BR6j3SZLDlbZ26hO76082dD3H1rXdB8KZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvTGVuZ3RoIDczIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDO2NFAwULAwU9A1NDZUMLI0VjA3M1BIMeQCCoFYuVwwsRwwy8wSxDI0N0Ni6ZoZQmWRWCDjcrhgBufAzMvhyuBKAwAeiRaVCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0xlbmd0aCA2OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwztjRQMFCwNFfQNTQ2VDA2MFEwNzNQSDHkgjFzwSywbA4XTB2EZQZiGBmaILHMgMaBJeEMkBk5cNNyuDK40gD6qRZFCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCAyMzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbsQwDLv7FfzAANbuvCfFoIf2/9dSyhQIQCW2uCViYyMCLzH4OYjc+JI1oyZ+Z3JX/CxPhUfCreBJFIGX4V52gssbxmU/DjMfvJdWzqTGkwzIRTY9PBEy2CUQOjC7BnXYZtqJviHhsyNSzUaW09cS9NIqBMpTtt/pghJtq/pz+6wLbfvaE052e+pJ5ROI55aswGXjFZPFWAY9UblLMX2Q6myhJ6G8KJ+DbD5qiESXKGfgicHBKNAO7LntZ+JVIWhd3adtY6hGSsfTvw1NTZII+UQJZ7Y07hb+f8+9vtf7D04hVBEKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9MZW5ndGggMzk1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9MZW5ndGggMTM2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2PQQ4DMQgD73mFn0AgQHjPVlUP2/9fS9h20wseyYBsUQaBJYd4hxvh0dsP30U2FWfjnF9SKWIhmE9wnzBTHI0pd/Jjj4BxlGosp2h4XkvOTcMXLXcTLaWtl5MZb7jul/dHlW2RDUXPLQtC12yS+TKBB3wYmEd142mlx932bK/2/ADObDRJCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0xlbmd0aCAyNDkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVFJigMwDLvnFfpAIV6TvKdDmUPn/9fKDoU5BAmvkpOWmFgLDzGEHyw9+JEhczf9G36i2btZepLJ2f+Y5yJTUfhSqC5iQl2IG8+hEfA9oWsSWbG98Tkso5lzvgcfhbgEM6EBY31JMrmo5pUhE04MdRwOWqTCuGtiw+Ja0TyN3G77RmZlJoQNj2RC3BiAiCDrArIYLJQ2NhMyWc4D7Q3JDVpg16kbUYuCK5TWCXSiVsSqzOCz5tZ2N0Mt8uCoffH6aFaXYIXRS/VYeF+FPpipmXbukkJ64U07IsweCqQyOy0rtXvE6m6B+j/LUvD9yff4Ha8PzfxcnAplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9MZW5ndGggOTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY3BEcAgCAT/VEEJCgraTyaTh/b/jRAyfGDnDu6EBQu2eUYfBZUmXhVYB0pj3FCPQL3hci3J3AUPcCd/2tBUnJbTd2mRSVUp3KQSef8OZyaQqHnRY533C2P7IzwKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvTGVuZ3RoIDE2NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkMdxBTEMQ++qAiUwgAr1rMfzD+v+r4b000F6GEIMYk/CsFxXcWF0w4+3LTMNf0cZ7sb6MmO81VggJ+gDDJGJq9Gk+nbFGar05NVirqOiXC86IhLMkuOrQCN8OrLHk7a2M/10Xh/sIe8T/yoq525hAS6q7kD5Uh/x1I/ZUeqaoY8qK2seatpXhF0RSts+LqcyTt29A1rhvZWrPdrvPx52OvIKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvTGVuZ3RoIDcyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiGeAmCBtEMUgFkSxmYkZRB2cAZHL4EoDACXbFskKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD3MORKAMAgF0J5T/COEyCL3cRyLeP9WMNEGHqt6oCE4g7rBreFgyrp0E+9T49XGnBIJqHhKTZa6C3rUtL7Uvmjgu+vmS9WJP83PF50Pux0Z3QplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9MZW5ndGggMTYzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQOxIDIQxDe06hI/gjAz7PZjIpNvdvY9hsUsDTWCCDuxOC1NqCieiCh7Yl3QXvrQRnY/zpNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75Q3D1X/W/Yt05m4mBycodCM3qU9z5NjuiurrJ/qTH3KzXfivsVWFpWUvLCbedu2ZACdxTOdqrPT8fCjr2CmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCAzMjIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVG7bcUwDOw1BRcwIH4lzeMgSJG3f5s72qlI07wfVV4ypVwudckqWWHypUN1iqZ8nmam/A71kOOYHtkhulPWlnsYFpaJeUodsZos93ALNr4AmhJzC/H3CPArgFHARKBu8fcPulkSQBoU/BTomquWWGICDYuFrdkV4lbdKVi4q/h2JLkHCXIxWehTDkWKKbfAfBks2ZFanOtyWQr/bn0CGmGFOOyzi0TgecADTCT+ZIBszz5b7OrqRTZ2hjjp0ICLgJvNJAFBUzirPrhh+2q75ueZKCc4OdavojG+DU7mS1LeV7nHz6BB3vgzPGd3jlAOmlAI9N0CIIfdwEaEPrXPwC4Dtkm7d2NK+ZxkKb4ENgr2qFMdyvBi7MxWb9j8x+jKZlFskJX10ekOytygE2Ieb2ShW7K2+zcPs33/AV8Ze2QKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9MZW5ndGggNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhyuDKw0A4bQNmAplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9MZW5ndGggMTYwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0xlbmd0aCAzMzQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVJLcsUgDNtzCl2gM/gH5DzpdLp4vf+2kpNFRg5g9DHlholKfFkgt6PWxLeNzECF4a+rzIXPSNvIOojLkIu4ki2Fe0Qs5DHEPMSC76vxHh75rMzJswfGL9l3Dyv21IRlIePFGdphFcdhFeRYsHUhqnt4U6TDqSTY44v/PsVzLQQtfEbQgF/kn6+O4PmSFmn3mG3TrnqwTDuqpLAcbE9zXiZfWme5Oh7PB8n2rtgRUrsCFIW5M85z4SjTVka0FnY2SGpcbG+O/VhK0IVuXEaKI5CfqSI8oKTJzCYK4o+cHnIqA2Hqmq50chtVcaeezDWbi7czSWbrvkixmcJ5XTiz/gxTZrV5J89yotSpCO+xZ0vQ0Dmunr2WWWh0mxO8pITPxk5PTr5XM+shORUJqWJaV8FpFJliCdsSX1NRU5p6Gf778u7xO37+ASxzfHMKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvTGVuZ3RoIDcwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMzNlMwULAwAhKmpoYK5kaWCimGXEA+iJXLBRPLAbPMLMyBLCMLkJYcLkMLYzBtYmykYGZiBmRZIDEgujK40gCYmhMDCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0xlbmd0aCAzMjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0xlbmd0aCAxMzMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvTGVuZ3RoIDM0MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9MZW5ndGggMTc0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDc2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2MOw6AMAxD95zCR2h+JAdCiIHef6UptIv99CTbxdFgWpECt8DJ5D6p03LPJDt8EJsh5FcbWrWuytKaDIuajL8N391N1wumOBfACmVuZHN0cmVhbQplbmRvYmoKNDYgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgMTQgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCAvc2V2ZW4KL2VpZ2h0IC9uaW5lIDcxIC9HIC9IIDkxIC9icmFja2V0bGVmdCA5MyAvYnJhY2tldHJpZ2h0IDk3IC9hIDk5IC9jIC9kIC9lIC9mCjEwNCAvaCAvaSAxMDcgL2sgMTEwIC9uIDExNCAvciAvcyAvdCAvdSAxMjIgL3ogXQo+PgovV2lkdGhzIDEzIDAgUiA+PgplbmRvYmoKMTQgMCBvYmoKPDwgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTM0MiA+PgplbmRvYmoKMTMgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTYgMCBvYmoKPDwgL0cgMTcgMCBSIC9IIDE4IDAgUiAvYSAxOSAwIFIgL2JyYWNrZXRsZWZ0IDIwIDAgUiAvYnJhY2tldHJpZ2h0IDIxIDAgUgovYyAyMiAwIFIgL2QgMjMgMCBSIC9lIDI0IDAgUiAvZWlnaHQgMjUgMCBSIC9mIDI2IDAgUiAvZml2ZSAyNyAwIFIKL2ZvdXIgMjggMCBSIC9oIDI5IDAgUiAvaSAzMCAwIFIgL2sgMzEgMCBSIC9uIDMyIDAgUiAvbmluZSAzMyAwIFIKL29uZSAzNCAwIFIgL3BlcmlvZCAzNSAwIFIgL3IgMzYgMCBSIC9zIDM3IDAgUiAvc2V2ZW4gMzggMCBSIC9zaXggMzkgMCBSCi9zcGFjZSA0MCAwIFIgL3QgNDEgMCBSIC90aHJlZSA0MiAwIFIgL3R3byA0MyAwIFIgL3UgNDQgMCBSIC96IDQ1IDAgUgovemVybyA0NiAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE1IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMCAvY2EgMSA+PgovQTIgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMSAvY2EgMSA+PgovQTMgPDwgL1R5cGUgL0V4dEdTdGF0ZSAvQ0EgMC44IC9jYSAwLjggPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjQ3IDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjkuMikKL0NyZWF0aW9uRGF0ZSAoRDoyMDI0MTAwMjA4MTYwNC0wNCcwMCcpID4+CmVuZG9iagp4cmVmCjAgNDgKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMjA3NjEgMDAwMDAgbiAKMDAwMDAyMDUyNCAwMDAwMCBuIAowMDAwMDIwNTU2IDAwMDAwIG4gCjAwMDAwMjA2OTggMDAwMDAgbiAKMDAwMDAyMDcxOSAwMDAwMCBuIAowMDAwMDIwNzQwIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MSAwMDAwMCBuIAowMDAwMDEwNzkyIDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAxMDc3MCAwMDAwMCBuIAowMDAwMDE5MDg5IDAwMDAwIG4gCjAwMDAwMTg4ODIgMDAwMDAgbiAKMDAwMDAxODM4MSAwMDAwMCBuIAowMDAwMDIwMTQyIDAwMDAwIG4gCjAwMDAwMTA4MTIgMDAwMDAgbiAKMDAwMDAxMTEzMiAwMDAwMCBuIAowMDAwMDExMjgzIDAwMDAwIG4gCjAwMDAwMTE2NjMgMDAwMDAgbiAKMDAwMDAxMTgwOCAwMDAwMCBuIAowMDAwMDExOTQ5IDAwMDAwIG4gCjAwMDAwMTIyNTQgMDAwMDAgbiAKMDAwMDAxMjU1OCAwMDAwMCBuIAowMDAwMDEyODgwIDAwMDAwIG4gCjAwMDAwMTMzNDggMDAwMDAgbiAKMDAwMDAxMzU1NyAwMDAwMCBuIAowMDAwMDEzODc5IDAwMDAwIG4gCjAwMDAwMTQwNDUgMDAwMDAgbiAKMDAwMDAxNDI4MiAwMDAwMCBuIAowMDAwMDE0NDI2IDAwMDAwIG4gCjAwMDAwMTQ1ODEgMDAwMDAgbiAKMDAwMDAxNDgxNyAwMDAwMCBuIAowMDAwMDE1MjEyIDAwMDAwIG4gCjAwMDAwMTUzNjcgMDAwMDAgbiAKMDAwMDAxNTQ5MCAwMDAwMCBuIAowMDAwMDE1NzIzIDAwMDAwIG4gCjAwMDAwMTYxMzAgMDAwMDAgbiAKMDAwMDAxNjI3MiAwMDAwMCBuIAowMDAwMDE2NjY1IDAwMDAwIG4gCjAwMDAwMTY3NTUgMDAwMDAgbiAKMDAwMDAxNjk2MSAwMDAwMCBuIAowMDAwMDE3Mzc0IDAwMDAwIG4gCjAwMDAwMTc2OTggMDAwMDAgbiAKMDAwMDAxNzk0NSAwMDAwMCBuIAowMDAwMDE4MDkzIDAwMDAwIG4gCjAwMDAwMjA4MjEgMDAwMDAgbiAKdHJhaWxlcgo8PCAvU2l6ZSA0OCAvUm9vdCAxIDAgUiAvSW5mbyA0NyAwIFIgPj4Kc3RhcnR4cmVmCjIwOTc4CiUlRU9GCg==", + "image/svg+xml": "\n\n\n \n \n \n \n 2024-10-02T08:16:04.770335\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "text/plain": "
" }, "metadata": {}, "output_type": "display_data" @@ -498,7 +483,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 7, "id": "8763a12b2bbd4a93a75aff182afb95dc", "metadata": { "collapsed": false @@ -506,9 +491,9 @@ "outputs": [ { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-10-01T22:13:25.392603\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNDI0LjQzNSAyNzkuNjI1MTY2MjkxMSBdIC9Db250ZW50cyA5IDAgUiAvQW5ub3RzIDEwIDAgUiA+PgplbmRvYmoKOSAwIG9iago8PCAvTGVuZ3RoIDEyIDAgUiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJy1W02TFDcSvdevqKN9oJBSX6mjWe+y4Rs2sT4QPhDDGOMFNvCYdcT++n1P6m5J1R9UDzNEjN3kVEv5pMx8L1Xi6fe3/313c/vj82fz336anra/3dxNdv4dP29nM/+On79mOz/Hz9vJ4G8fJi9+8S7g8/vDZ0l5iRJsjDCa8a+/TdOv09PvMMAdvvN8moIsNjgrYXZpCd6lgFFF8dmO1ve9VRK+pil7D3sbYjDvppI61Vs4DQCLAgImpmWKsigGNKmfuzP6xeymnp5hDf6aPuG/Zn5iMFawS7Lqs3dWZRZZcphvPkzPXk5P/2Fna+aXv5YlevlmejV/YxZjvp1/mV/+MP395fRiKn5M1oQlem+c7x3orZc8yB6rYUVsyCZv8UBOeOAVWxZTtIMHnfWSBxbfccZlrxpd3OKCP+FCtosIxsiDC531oguKUXOkry76LS7EYxeEUwhWMg5B2FkvuYBHFtXMDTPZbnFBT7iQ4qKW4TS40FkvuhARMiqI2qhWN7hgh2js19Pgl5G5lBdJyg/nx3n38c3nm9s38+ub+e7P13/8e7777d2v3842MQnD/M2f86vn//zfL8doW8YGXYxFCEfWEl3i2noSLQZJZYbgFzwlaoJL8chRXVzSbFB7Dh7j+ebNJ5QDw1FN+3DzYcYAT76//f31vz7/9Prj3ZMP7z5+vpu//8/84oT7ZblccOoG/zvzZQA5Ls5pMCkqnt0EwDwsAC+LBEWmD/4frJfdtw6FItrkvLq8xX236MO6r35xCHmXRv+b+QsAUD4Cqni0WXPahiA+KAKRuAQTDIpXj6AzX0bA6pMMsGbrjd+GwD8sggivRSWPMdSZv4Ag+kWd9TbiWbsNwddl8aeJHjzhs9YvKbOsWuORstbDp2COU7EVvU+fX9+9u/14+0dX6N6+u707rnWf5hPiRlxYyJWo5yB5i7mNifMft/PP88dZ5h9muwRKlKXUP42SAlbcx92fhN8kE1QxjuT5x+fzqNamn6YX89dMbDlbVrA65udsJvhsbI5GT8zWxBJ2G7xhIgt5ROyCDiEFY14wkHOCGEiGjO6im/EpiqhnZCS3ZCQqoiRZjCWhyMSUlmiSlxm/RnD7RKNCEmT4rnNCepscXLH6JWvgEyksMMWstCL4kg/ICFBoqpH1fsqCJUBdhgsJ31JILVojQGJiuADSw7rnTGtekrcBAgQ1ArLWKIuJNUgf0KxNM9yJ8LY4YQ1CAYvkw6xYkoSNYum3FlFuFJ7McNNkn8sYCDp8SkZmxZ5YzljMWELlFxXrJz4XN/BLjBdS0BnyN7mQbLECa/RJ4wykGco7lZEFAEA7FsyCCPIuJ668dcJnFDICsgqEY7RY4xKhXjEg1iUAuONqoIwsToxi9oxip1jPAsUDgMlZlMJTRQo5Y2cWPJDxlxwWfCfbMiHUsYMOV0+GKxFSxghhMcCNZzLCEvPZ4jXoHiuGvYIVa54L76AcLD6gAubycIrOlfVAcMEXg5WEWVDATTVnFJES8ZgxgZHKGAifQIXsaBXFbhXkid/Eelt6nVLMviDHRmdjpFglINAKFuwcokBcAZ4k0iOalQJJEK4wgz4q2VO35pigXOvqmVxCzGJEBIsTodlmxESxIj18wDJwB4AQgcw+BzEGMelSptknbGgsZgBD+iLZaA5MTJoRY94KG68ySPRSBkGQWWN9LI64IueLGUucjc9Ct0EvPnChsEaYKIdi1ZBDKsaAnEZuKRckMt98MSseQUhGLmoIAT0IzQiygDoFvNgY5EiqfiDKsNHYvTmjlGNHynwuL1nwNJDnsheFJoBioZBH0hUJhYyx1c5GQxLCBZiKNpRiD9ixbJOPxZ5tWUvaPdc+Ie+sQT5aoyVKoGlQAFDdZGYiR++0IEKosaa6wgLAlkNxHao6IccCvaHANtV3hBqWU5XOYAEUk5alRbAh/uDEzHKA2mNLxHYiHn4sXhBLpMSvrdRYHyxxLc4TKyrrHbD54TePQBGoaYUdUBscJoYA5zalGDhx5SxG1SW2YOSjeY15pAsx7BFRDnXgC5oDQj/HgTAEW47tldwTBo2lqo2MIQgD8JMtG9sog+aYTY2mxhnMQJQWxk9PGjQjICqVHEhDEDNgaStxYA2aEWjsxwbaEISSc8bW4tJ4g3aEHvJ2JA6mPWpLNivqoD0DfkHUuEMMky8iY0byoB2FVSshNPoQhqRWTB19iMlIM4SAG/mDdtQB7MvIIKxCJhpbvWwUQnuAuqtc1jgEKY+9C7a62ViEdjgfKgU0GkHCQ54hI/PII7QnRM/OvicStMILedzLyCS0g0OlFuVGJayWyBhXybxxCe2IAldESccm+A8iy4e6iY1OaKdckYFOxLLNQ7ULI5/QjjhEbI2EwiLtkkulvneMQju+uSOaA6MgUsEAAD9SCs1ZMmTOyClYlwUpYcohWUcqtOcYUrU3VhFIdfR3RTN0rELKMPizI6EDrdDOw746zIFX2KcYBwp2I7PQjv8zogdqEXGkJ1uZqHEL7SjQIn4kFxggsJAmMtIL7ZH9URz5pbgAaCXFO36hHdkeooz8wobMeo1eR36hHfM4WfGLCDI7OaTEQDA0E3i0I8EQOepAzfKOYWhPBi1KGBlGmKpoVeoqN4ahPQmyXB+GYsKuE4iZfYHZ1312IaXm+2Qeh2L2XUdSTOxc5TPBL3ZkgzJ8mWGQ6TYi3sPAMBDbCAeI6LEjoRnRi8AeGAZJjXKL5NCeYlicYSyB3xiGVoctLrnfGAYaBsUk1Qkbw9AsilZTB4ahQEiYr9SbRjE0W5SbEkyNYsgeEXRQ60SjmMIqBtUhjRRT5ErE9GmkGNpBJDWGO4qh6kFqxsJsjWIokpDSElb9Ce3Y0lS7mUYx9AwdfIoycgztqKwhrzimSDZsRpGEHcfQ7jiBjhxD6Ydd33ckB46h3WmOFVbjGEpLcErWVatCezJed/YDx1S7uCIpGsdweHxbK7U1jilKVF20ceQYwkWwm1KPO44pJw9WNI8Uw8VHs2Fr29kohpsFDWmiDhxTYgFDlXrZcUyJqJyDW3EMAzDnKpc7imHEoz2JwY8cwwTBWlYZ3ZEM0ywgU8tJW0cythys8GR+JBnQFCtqbY87krE8S8n1xLcjGQYdtzCGkWQQ0Dy3c6vmxYKqEiRULfaNZBikqI65Ng2NZGwhGSl6vOMYmrHHNaA6jimxLuiUVy0MvVQeg+ZVD0OwstOifQ+DRTM5qF33MGU93K7N6HsY8j6A+XUPg/2x2KG8amJQ+iBl0opjGJigQ1/kRscx2E2U1FwfbxTDZjyQOkeGYSMdXG2CH6KV2Jd5f3TMVayOofUYBNMOuaZHGD3tGWsamJKvBfZ/HgWV6Zdz1xACJRd650R4uFPDOumrGZUeTy5+/mU285upP7ucH//s8owXdr7mIPOhF6D134/fmZ/1orXp8zVtOqmB50LsDtXs391/GJrSRDGADn7dlCZbztOzH5tSFKEASq6ngF1TGjIFiei6KQ2ooRm1e92VoobmFGR1qCm+kNNOB3VNKT5mLGSpm31T6rBkJKGVYKCWd9Hvzg67phQeo266lV5g+4YdScaue1I8jjjPo16QQtyyI/quJ+WJRQrGrfUCCjB22ZaOqdcLPP3DdGHVkwIytICtHUovGNTxJV2oqq8JhpTZMKmJK8GQyNyxHlB2egFiGUTj40ovwF8PfjrSC8CH1Ra7OufkcggUnHUrvQC2c1jioil7vRBYQIxxutILHrvsY66U2AkGhAKkpjq3Egxga5C1jnIBWRWTWZ11MrCQYVKn7MVC+Wjt6rTTImoMmF3dWi2A/ZFFdZxOLQj3VXedaqcW2ALCnepPpxaEq6daD187teCwIw7CPq/UAqI7YbnriWqnFpgwztad7dQCagqmqDvbqwWWHGGxHtUC8ytIynlUC7wLkgS7Fke5wFfEWaIv0uuhC1zrTufH707Pe3FoVecrWtWHrvUH4j+i3Es6qjXMobxkQWkY+uUSPtGW9xKtXUbZZqSmPHTLsObyfqRvliMcQPSV3q81y5EFuLbVrVVmSTSuls3WKcdyklf7mtYoRxRtl+pBceuTYzm9r81La5PL5RgUxjB2ybG+Yc+r93cRiecQ03nskcv7TanJ1hEezEidHEa+Y7EW9IB2pDu+94xRd6/qDmwHzgQRpHp+18gusdvVo+6YKZclrc5fE9cji1m1xjAjZ6k8BqJLyHKne/478ByyNrBIjTSHrfQ+1SapYzkoAHQqsc54ILnEyIBfK47jLS3wXO3cG8UpLwHkekbWMZyygGVegBsITgWl8tAoH/it0BtJaqA33gABv4QVuynLfNC4YjdlVwroq25YWcbg6+rAlfcQ1dcXsY3aOBqqpY0js8GMnjHWA7xGbEr2NfWkuOM1vs3l5KtXeEwHhFY5C+hYDWaDEhfTQGtwz4Pd653JxmsAw1tGlWEbrSnf24Iz8shqMBsKRBlJrbzGZhM5chr2AGGh1dwoDRuZeZy1YjRlUcqybn8RO8j4etrU8RkCjccm9eC40VmimgrGpoHNKF7MLtc7MkMuqWgqCq7jssS2qEqFxmS8txJtPZTviCzyNQwI5Sve3Z0t3l2f8tg8kTp+euzG9KwTpiera7tUtrvmcJd3fOTkbeIz94Mx3Kl7xh/O3jPGF664rTw83Y1zcfyn37l6XfkH3rHGTzki2d24ngQlKNcvKt8o7cbzlheoett72GK5i91sKAlMYlYHu7Ioo4KWm2lvE9Bu0sNge2MopFC+W8cXFvO9qbrRmW56lzs7EiujPh/ZoS4OK9PmGqwHtzj2wd4gvB/MB6zdfG1JTq7nDS+OP9tfHC9nKwi241tZW082JoSllKsPFUHAwkWpO+f4zuDI/n4CyZy0I0JMif5daOzusXfX6kCgh/VG+Am/WXOyu9Emq+vA/aW17ibYNQcoPUIoft3HZo+w2UeEvf06hKw6/OaXENrTCO97TtOD5dGAPbGdzT6C7e3XgUUSGrthO+Uc2PsdB/VgoWqCntjZZh/B9varwBZZpRt21p0De7/WsANrqQlPJGpnH8AO9uvAUu9uSVR/Fux9OtAeKzSPO5GynX3E2tuvwxp9LclfwhrORvG9Gt0eLBRnOpGynX0E29uvA+vRUG1J2XgO7AVh2CNyvCV7YvuafUTU269DxL5hS16mc4jupT97rDac5M/OPmLt7ddh5THulrTUc1jvJ3M7sDmdZNJmHqD25quQ8qbqlpzMPdDT4n67RFr9M0MHZRdCaSkGhcRL3WszUFNCH5sL6or41d6fE8ixUHb35Y0Safz3UmegXyWYOryDXmp4B7nU8B6ppWvwbhZMdttWb5NP57d6UE8N+iCeGvQj7XQN9K3yycom6BvF1Hnog5Zq0Acp1aAfKakroG8WU9Ztgr5RWp2FPiqrA/RRWB2gH+uqa6BvlVbWb4N+rdCaRuSDzmrIB5nVkB+prGuQbxVaNmyL922y6/ymD6qrQR9EV4N+pLmugb5Vdtm4CfoFEdbhGzRYwzdIsIbvSIFdg2+rCLNpE76rJdkqqAdF1pAPgqwhP9Jj1yDfKsmsbkK+UaCdDepBnx2QD/LsAPxInV2Be6tAs4NCezH9H9HObjEKZW5kc3RyZWFtCmVuZG9iagoxMiAwIG9iago0MjA1CmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9MZW5ndGggMjQ3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSW7EMAy7+xX8wACWrMV5T4pBD+3/ryUdFO3BECNLXOLuxEQWXrZQ10KH48NGXgmbge+D1pz4GrHiP9pGpJU/VFsgEzFRJHRRNxr3SDe8CtF+pIJXqvdY8xF3K81bOnaxv/fBtOaRKqtCPOTYHNlIWtdE0fE9tN5zQ3TKIIE+NyEHRGmOXoWkv/bDdW00u7U2syeqg0emhPJJsxqa0ylmyGyox20qVjIKN6qMivtURloP8jbOMoCT44QyWk92rCai/NQnl5AXE3HCLjs7FmITCxuHtB+VPrH8fOvN+JtpraWQcUEiNMWl32e8x+d4/wCVT1wmCmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0xlbmd0aCA3OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNzVSMFCwtAASZqYmCuZGlgophlxAPoiVy2VoaQ5m5YBZJsYGQJapqSkSCyIL0wthweRgtLGJOdQEBAskB7Y2B2ZbDlcGVxoA1pQcDAplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9MZW5ndGggMzA3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCA3MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwztjRQMFCwMFPQNTQ2VDCyNFYwNzNQSDHkAgqBWLlcMLEcMMvMEsQyNDdDYumaGUJlkVgg43K4YAbnwMzL4crgSgMAHokWlQplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9MZW5ndGggNjkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicM7Y0UDBQsDRX0DU0NlQwNjBRMDczUEgx5IIxc8EssGwOF0wdhGUGYhgZmiCxzIDGgSXhDJAZOXDTcrgyuNIA+qkWRQplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9MZW5ndGggMjMyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVRSW7EMAy7+xX8wADW7rwnxaCH9v/XUsoUCEAltrglYmMjAi8x+DmI3PiSNaMmfmdyV/wsT4VHwq3gSRSBl+FedoLLG8ZlPw4zH7yXVs6kxpMMyEU2PTwRMtglEDowuwZ12Gbaib4h4bMjUs1GltPXEvTSKgTKU7bf6YISbav6c/usC2372hNOdnvqSeUTiOeWrMBl4xWTxVgGPVG5SzF9kOpsoSehvCifg2w+aohElyhn4InBwSjQDuy57WfiVSFoXd2nbWOoRkrH078NTU2SCPlECWe2NO4W/n/Pvb7X+w9OIVQRCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0xlbmd0aCAyMzEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNU85kgQhDMt5hT4wVRjbQL+np7Y22Pl/upKZTpDwIcnTEx2ZeJkjI7Bmx9taZCBm4FNMxb/2tA8TqvfgHiKUiwthhpFw1qzjbp6OF/92lc9YB+82+IpZXhDYwkzWVxZnLtsFY2mcxDnJboxdE7GNda2nU1hHMKEMhHS2w5Qgc1Sk9MmOMuboOJEnnovv9tssdjl+DusLNo0hFef4KnqCNoOi7HnvAhpyQf9d3fgeRbvoJSAbCRbWUWLunOWEX712dB61KBJzQppBLhMhzekqphCaUKyzo6BSUXCpPqforJ9/5V9cLQplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDM5NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UktuxUAI2+cUXKDS8JvPeVJV3bz7b2tDUqkqvIkxxjB9ypC55UtdEnGFybderls8pnwuW1qZeYi7i40lPrbcl+4htl10LrE4HUfyCzKdKkSozarRofhCloUHkE7woQvCfTn+4y+AwdewDbjhPTJBsCTmKULGblEZmhJBEWHnkRWopFCfWcLfUe7r9zIFam+MpQtjHPQJtAVCbUjEAupAAETslFStkI5nJBO/Fd1nYhxg59GyAa4ZVESWe+zHiKnOqIy8RMQ+T036KJZMLVbGblMZX/yUjNR8dAUqqTTylPLQVbPQC1iJeRL2OfxI+OfWbCGGOm7W8onlHzPFMhLOYEs5YKGX40fg21l1Ea4dubjOdIEfldZwTLTrfsj1T/5021rNdbxyCKJA5U1B8LsOrkaxxMQyPp2NKXqiLLAamrxGM8FhEBHW98PIAxr9crwQNKdrIrRYIpu1YkSNimxzPb0E1kzvxTnWwxPCbO+d1qGyMzMqIYLauoZq60B2s77zcLafPzPoom0KZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvTGVuZ3RoIDEzNiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNj0EOAzEIA+95hZ9AIEB4z1ZVD9v/X0vYdtMLHsmAbFEGgSWHeIcb4dHbD99FNhVn45xfUiliIZhPcJ8wUxyNKXfyY4+AcZRqLKdoeF5Lzk3DFy13Ey2lrZeTGW+47pf3R5VtkQ1Fzy0LQtdskvkygQd8GJhHdeNppcfd9myv9vwAzmw0SQplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0xlbmd0aCAzNDEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRVJLbkQxCNu/U3CBSOGXkPO0qrqY3n9bm0zVzeAJYGx4y1OmZMqwuSUjJNeUT30iQ6ym/DRyJCKm+EkJBXaVj8drS6yN7JGoFJ/a8eOx9Eam2RVa9e7Rpc2iUc3KyDnIEKGeFbqye9QO2fB6XEi675TNIRzL/1CBLGXdcgolQVvQd+wR3w8droIrgmGway6D7WUy1P/6hxZc7333YscugBas577BDgCopxO0BcgZ2u42KWgAVbqLScKj8npudqJso1Xp+RwAMw4wcsCIJVsdvtHeAJZ9XehFjYr9K0BRWUD8yNV2wd4xyUhwFuYGjr1wPMWZcEs4xgJAir3iGHrwJdjmL1euiJrwCXW6ZC+8wp7a5udCkwh3rQAOXmTDraujqJbt6TyC9mdFckaM1Is4OiGSWtI5guLSoB5a41w3seJtI7G5V9/uH+GcL1z26xdL7ITECmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0xlbmd0aCAxNjQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZDHcQUxDEPvqgIlMIAK9azH8w/r/q+G9NNBehhCDGJPwrBcV3FhdMOPty0zDX9HGe7G+jJjvNVYICfoAwyRiavRpPp2xRmq9OTVYq6jolwvOiISzJLjq0AjfDqyx5O2tjP9dF4f7CHvE/8qKuduYQEuqu5A+VIf8dSP2VHqmqGPKitrHmraV4RdEUrbPi6nMk7dvQNa4b2Vqz3a7z8edjryCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0xlbmd0aCA3MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohngJggbRDFIBZEsZmJGUQdnAGRy+BKAwAl2xbJCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0xlbmd0aCA4MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9zDkSgDAIBdCeU/wjhMgi93Eci3j/VjDRBh6reqAhOIO6wa3hYMq6dBPvU+PVxpwSCah4Sk2Wugt61LS+1L5o4Lvr5kvViT/NzxedD7sdGd0KZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0xlbmd0aCAzOQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZDO40gAV8wp8CmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0xlbmd0aCAxNjMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvTGVuZ3RoIDMyMiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UbttxTAM7DUFFzAgfiXN4yBIkbd/mzvaqUjTvB9VXjKlXC51ySpZYfKlQ3WKpnyeZqb8DvWQ45ge2SG6U9aWexgWlol5Sh2xmiz3cAs2vgCaEnML8fcI8CuAUcBEoG7x9w+6WRJAGhT8FOiaq5ZYYgINi4Wt2RXiVt0pWLir+HYkuQcJcjFZ6FMORYopt8B8GSzZkVqc63JZCv9ufQIaYYU47LOLROB5wANMJP5kgGzPPlvs6upFNnaGOOnQgIuAm80kAUFTOKs+uGH7arvm55koJzg51q+iMb4NTuZLUt5XucfPoEHe+DM8Z3eOUA6aUAj03QIgh93ARoQ+tc/ALgO2Sbt3Y0r5nGQpvgQ2CvaoUx3K8GLszFZv2PzH6MpmUWyQlfXR6Q7K3KATYh5vZKFbsrb7Nw+zff8BXxl7ZAplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9MZW5ndGggODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0xlbmd0aCA1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHK4MrDQDhtA2YCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0xlbmd0aCAyNDMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVG7rQMxDOs9hRY4wPrZvnkueHjFZf82pJwEqURDFEnJw1O6ZMphfUpGSI4uD20aS2y6PDdCU4eKgqlrieqUq5mmzFMsTdDz3lmu5hjge1U31N/0iF4CkVGCVWGBDpA7uGD42WsmbFELIjGGUDOAacIKc7gSMQQZjLVnGJQqDE7VzypX+y+nZdgqsHgwnSI/sppop1+6HHjrKQdC2NyVu3ohTQjujQZjzCxcd6mynQAcTHSZiYxYvA3H0yEMDV6aBqxw1o2YILEbI6UPXgcZ07B3RR51txjxvlvGlLvVz31RfeZd7R8IwRsn+HsByhtdXgplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9MZW5ndGggMTYwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0xlbmd0aCAzMzQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVJLcsUgDNtzCl2gM/gH5DzpdLp4vf+2kpNFRg5g9DHlholKfFkgt6PWxLeNzECF4a+rzIXPSNvIOojLkIu4ki2Fe0Qs5DHEPMSC76vxHh75rMzJswfGL9l3Dyv21IRlIePFGdphFcdhFeRYsHUhqnt4U6TDqSTY44v/PsVzLQQtfEbQgF/kn6+O4PmSFmn3mG3TrnqwTDuqpLAcbE9zXiZfWme5Oh7PB8n2rtgRUrsCFIW5M85z4SjTVka0FnY2SGpcbG+O/VhK0IVuXEaKI5CfqSI8oKTJzCYK4o+cHnIqA2Hqmq50chtVcaeezDWbi7czSWbrvkixmcJ5XTiz/gxTZrV5J89yotSpCO+xZ0vQ0Dmunr2WWWh0mxO8pITPxk5PTr5XM+shORUJqWJaV8FpFJliCdsSX1NRU5p6Gf778u7xO37+ASxzfHMKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvTGVuZ3RoIDcwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMzNlMwULAwAhKmpoYK5kaWCimGXEA+iJXLBRPLAbPMLMyBLCMLkJYcLkMLYzBtYmykYGZiBmRZIDEgujK40gCYmhMDCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0xlbmd0aCAzMjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKNDQgMCBvYmoKPDwgL0xlbmd0aCAxMzMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDM0MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8IC9MZW5ndGggMTc0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago0OCAwIG9iago8PCAvTGVuZ3RoIDc2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2MOw6AMAxD95zCR2h+JAdCiIHef6UptIv99CTbxdFgWpECt8DJ5D6p03LPJDt8EJsh5FcbWrWuytKaDIuajL8N391N1wumOBfACmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgMTQgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCAvc2V2ZW4KL2VpZ2h0IC9uaW5lIDcxIC9HIC9IIDkxIC9icmFja2V0bGVmdCA5MyAvYnJhY2tldHJpZ2h0IDk3IC9hIDk5IC9jIC9kIC9lIC9mCi9nIC9oIC9pIDEwNyAvayAxMTAgL24gMTEzIC9xIC9yIC9zIC90IC91IDEyMiAveiBdCj4+Ci9XaWR0aHMgMTMgMCBSID4+CmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0ZvbnROYW1lIC9CTVFRRFYrRGVqYVZ1U2FucyAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvQXNjZW50IDkyOSAvRGVzY2VudCAtMjM2IC9DYXBIZWlnaHQgMAovWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMzQyID4+CmVuZG9iagoxMyAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNiAwIG9iago8PCAvRyAxNyAwIFIgL0ggMTggMCBSIC9hIDE5IDAgUiAvYnJhY2tldGxlZnQgMjAgMCBSIC9icmFja2V0cmlnaHQgMjEgMCBSCi9jIDIyIDAgUiAvZCAyMyAwIFIgL2UgMjQgMCBSIC9laWdodCAyNSAwIFIgL2YgMjYgMCBSIC9maXZlIDI3IDAgUgovZm91ciAyOCAwIFIgL2cgMjkgMCBSIC9oIDMwIDAgUiAvaSAzMSAwIFIgL2sgMzIgMCBSIC9uIDM0IDAgUiAvbmluZSAzNSAwIFIKL29uZSAzNiAwIFIgL3BlcmlvZCAzNyAwIFIgL3EgMzggMCBSIC9yIDM5IDAgUiAvcyA0MCAwIFIgL3NldmVuIDQxIDAgUgovc2l4IDQyIDAgUiAvc3BhY2UgNDMgMCBSIC90IDQ0IDAgUiAvdGhyZWUgNDUgMCBSIC90d28gNDYgMCBSIC91IDQ3IDAgUgoveiA0OCAwIFIgL3plcm8gNDkgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4KL0EzIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAuOCAvY2EgMC44ID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9GMS1EZWphVnVTYW5zLW1pbnVzIDMzIDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvVHlwZSAvUGFnZXMgL0tpZHMgWyAxMSAwIFIgXSAvQ291bnQgMSA+PgplbmRvYmoKNTAgMCBvYmoKPDwgL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuOS4yLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuOS4yKQovQ3JlYXRpb25EYXRlIChEOjIwMjQxMDAxMjIxMzI1LTA0JzAwJykgPj4KZW5kb2JqCnhyZWYKMCA1MQowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxNTU2NyAwMDAwMCBuIAowMDAwMDE1MzAyIDAwMDAwIG4gCjAwMDAwMTUzMzQgMDAwMDAgbiAKMDAwMDAxNTQ3NiAwMDAwMCBuIAowMDAwMDE1NDk3IDAwMDAwIG4gCjAwMDAwMTU1MTggMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzQ1IDAwMDAwIG4gCjAwMDAwMDQ2NDYgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDA0NjI1IDAwMDAwIG4gCjAwMDAwMTM4NDcgMDAwMDAgbiAKMDAwMDAxMzY0MCAwMDAwMCBuIAowMDAwMDEzMTM3IDAwMDAwIG4gCjAwMDAwMTQ5MDAgMDAwMDAgbiAKMDAwMDAwNDY2NiAwMDAwMCBuIAowMDAwMDA0OTg2IDAwMDAwIG4gCjAwMDAwMDUxMzcgMDAwMDAgbiAKMDAwMDAwNTUxNyAwMDAwMCBuIAowMDAwMDA1NjYyIDAwMDAwIG4gCjAwMDAwMDU4MDMgMDAwMDAgbiAKMDAwMDAwNjEwOCAwMDAwMCBuIAowMDAwMDA2NDEyIDAwMDAwIG4gCjAwMDAwMDY3MzQgMDAwMDAgbiAKMDAwMDAwNzIwMiAwMDAwMCBuIAowMDAwMDA3NDExIDAwMDAwIG4gCjAwMDAwMDc3MzMgMDAwMDAgbiAKMDAwMDAwNzg5OSAwMDAwMCBuIAowMDAwMDA4MzEzIDAwMDAwIG4gCjAwMDAwMDg1NTAgMDAwMDAgbiAKMDAwMDAwODY5NCAwMDAwMCBuIAowMDAwMDA4ODQ5IDAwMDAwIG4gCjAwMDAwMDkwMjEgMDAwMDAgbiAKMDAwMDAwOTI1NyAwMDAwMCBuIAowMDAwMDA5NjUyIDAwMDAwIG4gCjAwMDAwMDk4MDcgMDAwMDAgbiAKMDAwMDAwOTkzMCAwMDAwMCBuIAowMDAwMDEwMjQ2IDAwMDAwIG4gCjAwMDAwMTA0NzkgMDAwMDAgbiAKMDAwMDAxMDg4NiAwMDAwMCBuIAowMDAwMDExMDI4IDAwMDAwIG4gCjAwMDAwMTE0MjEgMDAwMDAgbiAKMDAwMDAxMTUxMSAwMDAwMCBuIAowMDAwMDExNzE3IDAwMDAwIG4gCjAwMDAwMTIxMzAgMDAwMDAgbiAKMDAwMDAxMjQ1NCAwMDAwMCBuIAowMDAwMDEyNzAxIDAwMDAwIG4gCjAwMDAwMTI4NDkgMDAwMDAgbiAKMDAwMDAxNTYyNyAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDUxIC9Sb290IDEgMCBSIC9JbmZvIDUwIDAgUiA+PgpzdGFydHhyZWYKMTU3ODQKJSVFT0YK" + "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNDI0LjQzNSAyNzkuNjI1MTY2MjkxMSBdIC9Db250ZW50cyA5IDAgUiAvQW5ub3RzIDEwIDAgUiA+PgplbmRvYmoKOSAwIG9iago8PCAvTGVuZ3RoIDEyIDAgUiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJy1W02TFDcSvdevqKN9oJBSX6mjWe+y4Rs2sT4QPhDDGOMFNvCYdcT++n1P6m5J1R9UDzNEjN3kVEv5pMx8L1Xi6fe3/313c/vj82fz336anra/3dxNdv4dP29nM/+On79mOz/Hz9vJ4G8fJi9+8S7g8/vDZ0l5iRJsjDCa8a+/TdOv09PvMMAdvvN8moIsNjgrYXZpCd6lgFFF8dmO1ve9VRK+pil7D3sbYjDvppI61Vs4DQCLAgImpmWKsigGNKmfuzP6xeymnp5hDf6aPuG/Zn5iMFawS7Lqs3dWZRZZcphvPkzPXk5P/2Fna+aXv5YlevlmejV/YxZjvp1/mV/+MP395fRiKn5M1oQlem+c7x3orZc8yB6rYUVsyCZv8UBOeOAVWxZTtIMHnfWSBxbfccZlrxpd3OKCP+FCtosIxsiDC531oguKUXOkry76LS7EYxeEUwhWMg5B2FkvuYBHFtXMDTPZbnFBT7iQ4qKW4TS40FkvuhARMiqI2qhWN7hgh2js19Pgl5G5lBdJyg/nx3n38c3nm9s38+ub+e7P13/8e7777d2v3842MQnD/M2f86vn//zfL8doW8YGXYxFCEfWEl3i2noSLQZJZYbgFzwlaoJL8chRXVzSbFB7Dh7j+ebNJ5QDw1FN+3DzYcYAT76//f31vz7/9Prj3ZMP7z5+vpu//8/84oT7ZblccOoG/zvzZQA5Ls5pMCkqnt0EwDwsAC+LBEWmD/4frJfdtw6FItrkvLq8xX236MO6r35xCHmXRv+b+QsAUD4Cqni0WXPahiA+KAKRuAQTDIpXj6AzX0bA6pMMsGbrjd+GwD8sggivRSWPMdSZv4Ag+kWd9TbiWbsNwddl8aeJHjzhs9YvKbOsWuORstbDp2COU7EVvU+fX9+9u/14+0dX6N6+u707rnWf5hPiRlxYyJWo5yB5i7mNifMft/PP88dZ5h9muwRKlKXUP42SAlbcx92fhN8kE1QxjuT5x+fzqNamn6YX89dMbDlbVrA65udsJvhsbI5GT8zWxBJ2G7xhIgt5ROyCDiEFY14wkHOCGEiGjO6im/EpiqhnZCS3ZCQqoiRZjCWhyMSUlmiSlxm/RnD7RKNCEmT4rnNCepscXLH6JWvgEyksMMWstCL4kg/ICFBoqpH1fsqCJUBdhgsJ31JILVojQGJiuADSw7rnTGtekrcBAgQ1ArLWKIuJNUgf0KxNM9yJ8LY4YQ1CAYvkw6xYkoSNYum3FlFuFJ7McNNkn8sYCDp8SkZmxZ5YzljMWELlFxXrJz4XN/BLjBdS0BnyN7mQbLECa/RJ4wykGco7lZEFAEA7FsyCCPIuJ668dcJnFDICsgqEY7RY4xKhXjEg1iUAuONqoIwsToxi9oxip1jPAsUDgMlZlMJTRQo5Y2cWPJDxlxwWfCfbMiHUsYMOV0+GKxFSxghhMcCNZzLCEvPZ4jXoHiuGvYIVa54L76AcLD6gAubycIrOlfVAcMEXg5WEWVDATTVnFJES8ZgxgZHKGAifQIXsaBXFbhXkid/Eelt6nVLMviDHRmdjpFglINAKFuwcokBcAZ4k0iOalQJJEK4wgz4q2VO35pigXOvqmVxCzGJEBIsTodlmxESxIj18wDJwB4AQgcw+BzEGMelSptknbGgsZgBD+iLZaA5MTJoRY94KG68ySPRSBkGQWWN9LI64IueLGUucjc9Ct0EvPnChsEaYKIdi1ZBDKsaAnEZuKRckMt98MSseQUhGLmoIAT0IzQiygDoFvNgY5EiqfiDKsNHYvTmjlGNHynwuL1nwNJDnsheFJoBioZBH0hUJhYyx1c5GQxLCBZiKNpRiD9ixbJOPxZ5tWUvaPdc+Ie+sQT5aoyVKoGlQAFDdZGYiR++0IEKosaa6wgLAlkNxHao6IccCvaHANtV3hBqWU5XOYAEUk5alRbAh/uDEzHKA2mNLxHYiHn4sXhBLpMSvrdRYHyxxLc4TKyrrHbD54TePQBGoaYUdUBscJoYA5zalGDhx5SxG1SW2YOSjeY15pAsx7BFRDnXgC5oDQj/HgTAEW47tldwTBo2lqo2MIQgD8JMtG9sog+aYTY2mxhnMQJQWxk9PGjQjICqVHEhDEDNgaStxYA2aEWjsxwbaEISSc8bW4tJ4g3aEHvJ2JA6mPWpLNivqoD0DfkHUuEMMky8iY0byoB2FVSshNPoQhqRWTB19iMlIM4SAG/mDdtQB7MvIIKxCJhpbvWwUQnuAuqtc1jgEKY+9C7a62ViEdjgfKgU0GkHCQ54hI/PII7QnRM/OvicStMILedzLyCS0g0OlFuVGJayWyBhXybxxCe2IAldESccm+A8iy4e6iY1OaKdckYFOxLLNQ7ULI5/QjjhEbI2EwiLtkkulvneMQju+uSOaA6MgUsEAAD9SCs1ZMmTOyClYlwUpYcohWUcqtOcYUrU3VhFIdfR3RTN0rELKMPizI6EDrdDOw746zIFX2KcYBwp2I7PQjv8zogdqEXGkJ1uZqHEL7SjQIn4kFxggsJAmMtIL7ZH9URz5pbgAaCXFO36hHdkeooz8wobMeo1eR36hHfM4WfGLCDI7OaTEQDA0E3i0I8EQOepAzfKOYWhPBi1KGBlGmKpoVeoqN4ahPQmyXB+GYsKuE4iZfYHZ1312IaXm+2Qeh2L2XUdSTOxc5TPBL3ZkgzJ8mWGQ6TYi3sPAMBDbCAeI6LEjoRnRi8AeGAZJjXKL5NCeYlicYSyB3xiGVoctLrnfGAYaBsUk1Qkbw9AsilZTB4ahQEiYr9SbRjE0W5SbEkyNYsgeEXRQ60SjmMIqBtUhjRRT5ErE9GmkGNpBJDWGO4qh6kFqxsJsjWIokpDSElb9Ce3Y0lS7mUYx9AwdfIoycgztqKwhrzimSDZsRpGEHcfQ7jiBjhxD6Ydd33ckB46h3WmOFVbjGEpLcErWVatCezJed/YDx1S7uCIpGsdweHxbK7U1jilKVF20ceQYwkWwm1KPO44pJw9WNI8Uw8VHs2Fr29kohpsFDWmiDhxTYgFDlXrZcUyJqJyDW3EMAzDnKpc7imHEoz2JwY8cwwTBWlYZ3ZEM0ywgU8tJW0cythys8GR+JBnQFCtqbY87krE8S8n1xLcjGQYdtzCGkWQQ0Dy3c6vmxYKqEiRULfaNZBikqI65Ng2NZGwhGSl6vOMYmrHHNaA6jimxLuiUVy0MvVQeg+ZVD0OwstOifQ+DRTM5qF33MGU93K7N6HsY8j6A+XUPg/2x2KG8amJQ+iBl0opjGJigQ1/kRscx2E2U1FwfbxTDZjyQOkeGYSMdXG2CH6KV2Jd5f3TMVayOofUYBNMOuaZHGD3tGWsamJKvBfZ/HgWV6Zdz1xACJRd650R4uFPDOumrGZUeTy5+/mU285upP7ucH//s8owXdr7mIPOhF6D134/fmZ/1orXp8zVtOqmB50LsDtXs391/GJrSRDGADn7dlCZbztOzH5tSFKEASq6ngF1TGjIFiei6KQ2ooRm1e92VoobmFGR1qCm+kNNOB3VNKT5mLGSpm31T6rBkJKGVYKCWd9Hvzg67phQeo266lV5g+4YdScaue1I8jjjPo16QQtyyI/quJ+WJRQrGrfUCCjB22ZaOqdcLPP3DdGHVkwIytICtHUovGNTxJV2oqq8JhpTZMKmJK8GQyNyxHlB2egFiGUTj40ovwF8PfjrSC8CH1Ra7OufkcggUnHUrvQC2c1jioil7vRBYQIxxutILHrvsY66U2AkGhAKkpjq3Egxga5C1jnIBWRWTWZ11MrCQYVKn7MVC+Wjt6rTTImoMmF3dWi2A/ZFFdZxOLQj3VXedaqcW2ALCnepPpxaEq6daD187teCwIw7CPq/UAqI7YbnriWqnFpgwztad7dQCagqmqDvbqwWWHGGxHtUC8ytIynlUC7wLkgS7Fke5wFfEWaIv0uuhC1zrTufH707Pe3FoVecrWtWHrvUH4j+i3Es6qjXMobxkQWkY+uUSPtGW9xKtXUbZZqSmPHTLsObyfqRvliMcQPSV3q81y5EFuLbVrVVmSTSuls3WKcdyklf7mtYoRxRtl+pBceuTYzm9r81La5PL5RgUxjB2ybG+Yc+r93cRiecQ03nskcv7TanJ1hEezEidHEa+Y7EW9IB2pDu+94xRd6/qDmwHzgQRpHp+18gusdvVo+6YKZclrc5fE9cji1m1xjAjZ6k8BqJLyHKne/478ByyNrBIjTSHrfQ+1SapYzkoAHQqsc54ILnEyIBfK47jLS3wXO3cG8UpLwHkekbWMZyygGVegBsITgWl8tAoH/it0BtJaqA33gABv4QVuynLfNC4YjdlVwroq25YWcbg6+rAlfcQ1dcXsY3aOBqqpY0js8GMnjHWA7xGbEr2NfWkuOM1vs3l5KtXeEwHhFY5C+hYDWaDEhfTQGtwz4Pd653JxmsAw1tGlWEbrSnf24Iz8shqMBsKRBlJrbzGZhM5chr2AGGh1dwoDRuZeZy1YjRlUcqybn8RO8j4etrU8RkCjccm9eC40VmimgrGpoHNKF7MLtc7MkMuqWgqCq7jssS2qEqFxmS8txJtPZTviCzyNQwI5Sve3Z0t3l2f8tg8kTp+euzG9KwTpiera7tUtrvmcJd3fOTkbeIz94Mx3Kl7xh/O3jPGF664rTw83Y1zcfyn37l6XfkH3rHGTzki2d24ngQlKNcvKt8o7cbzlheoett72GK5i91sKAlMYlYHu7Ioo4KWm2lvE9Bu0sNge2MopFC+W8cXFvO9qbrRmW56lzs7EiujPh/ZoS4OK9PmGqwHtzj2wd4gvB/MB6zdfG1JTq7nDS+OP9tfHC9nKwi241tZW082JoSllKsPFUHAwkWpO+f4zuDI/n4CyZy0I0JMif5daOzusXfX6kCgh/VG+Am/WXOyu9Emq+vA/aW17ibYNQcoPUIoft3HZo+w2UeEvf06hKw6/OaXENrTCO97TtOD5dGAPbGdzT6C7e3XgUUSGrthO+Uc2PsdB/VgoWqCntjZZh/B9varwBZZpRt21p0De7/WsANrqQlPJGpnH8AO9uvAUu9uSVR/Fux9OtAeKzSPO5GynX3E2tuvwxp9LclfwhrORvG9Gt0eLBRnOpGynX0E29uvA+vRUG1J2XgO7AVh2CNyvCV7YvuafUTU269DxL5hS16mc4jupT97rDac5M/OPmLt7ddh5THulrTUc1jvJ3M7sDmdZNJmHqD25quQ8qbqlpzMPdDT4n67RFr9M0MHZRdCaSkGhcRL3WszUFNCH5sL6or41d6fE8ixUHb35Y0Safz3UmegXyWYOryDXmp4B7nU8B6ppWvwbhZMdttWb5NP57d6UE8N+iCeGvQj7XQN9K3yycom6BvF1Hnog5Zq0Acp1aAfKakroG8WU9Ztgr5RWp2FPiqrA/RRWB2gH+uqa6BvlVbWb4N+rdCaRuSDzmrIB5nVkB+prGuQbxVaNmyL922y6/ymD6qrQR9EV4N+pLmugb5Vdtm4CfoFEdbhGzRYwzdIsIbvSIFdg2+rCLNpE76rJdkqqAdF1pAPgqwhP9Jj1yDfKsmsbkK+UaCdDepBnx2QD/LsAPxInV2Be6tAs4NCezH9H9HObjEKZW5kc3RyZWFtCmVuZG9iagoxMiAwIG9iago0MjA1CmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9MZW5ndGggMjQ3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSW7EMAy7+xX8wACWrMV5T4pBD+3/ryUdFO3BECNLXOLuxEQWXrZQ10KH48NGXgmbge+D1pz4GrHiP9pGpJU/VFsgEzFRJHRRNxr3SDe8CtF+pIJXqvdY8xF3K81bOnaxv/fBtOaRKqtCPOTYHNlIWtdE0fE9tN5zQ3TKIIE+NyEHRGmOXoWkv/bDdW00u7U2syeqg0emhPJJsxqa0ylmyGyox20qVjIKN6qMivtURloP8jbOMoCT44QyWk92rCai/NQnl5AXE3HCLjs7FmITCxuHtB+VPrH8fOvN+JtpraWQcUEiNMWl32e8x+d4/wCVT1wmCmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0xlbmd0aCA3OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNzVSMFCwtAASZqYmCuZGlgophlxAPoiVy2VoaQ5m5YBZJsYGQJapqSkSCyIL0wthweRgtLGJOdQEBAskB7Y2B2ZbDlcGVxoA1pQcDAplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9MZW5ndGggMzA3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCA3MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwztjRQMFCwMFPQNTQ2VDCyNFYwNzNQSDHkAgqBWLlcMLEcMMvMEsQyNDdDYumaGUJlkVgg43K4YAbnwMzL4crgSgMAHokWlQplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9MZW5ndGggNjkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicM7Y0UDBQsDRX0DU0NlQwNjBRMDczUEgx5IIxc8EssGwOF0wdhGUGYhgZmiCxzIDGgSXhDJAZOXDTcrgyuNIA+qkWRQplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9MZW5ndGggMjMyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVRSW7EMAy7+xX8wADW7rwnxaCH9v/XUsoUCEAltrglYmMjAi8x+DmI3PiSNaMmfmdyV/wsT4VHwq3gSRSBl+FedoLLG8ZlPw4zH7yXVs6kxpMMyEU2PTwRMtglEDowuwZ12Gbaib4h4bMjUs1GltPXEvTSKgTKU7bf6YISbav6c/usC2372hNOdnvqSeUTiOeWrMBl4xWTxVgGPVG5SzF9kOpsoSehvCifg2w+aohElyhn4InBwSjQDuy57WfiVSFoXd2nbWOoRkrH078NTU2SCPlECWe2NO4W/n/Pvb7X+w9OIVQRCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0xlbmd0aCAyMzEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNU85kgQhDMt5hT4wVRjbQL+np7Y22Pl/upKZTpDwIcnTEx2ZeJkjI7Bmx9taZCBm4FNMxb/2tA8TqvfgHiKUiwthhpFw1qzjbp6OF/92lc9YB+82+IpZXhDYwkzWVxZnLtsFY2mcxDnJboxdE7GNda2nU1hHMKEMhHS2w5Qgc1Sk9MmOMuboOJEnnovv9tssdjl+DusLNo0hFef4KnqCNoOi7HnvAhpyQf9d3fgeRbvoJSAbCRbWUWLunOWEX712dB61KBJzQppBLhMhzekqphCaUKyzo6BSUXCpPqforJ9/5V9cLQplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvTGVuZ3RoIDM5NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UktuxUAI2+cUXKDS8JvPeVJV3bz7b2tDUqkqvIkxxjB9ypC55UtdEnGFybderls8pnwuW1qZeYi7i40lPrbcl+4htl10LrE4HUfyCzKdKkSozarRofhCloUHkE7woQvCfTn+4y+AwdewDbjhPTJBsCTmKULGblEZmhJBEWHnkRWopFCfWcLfUe7r9zIFam+MpQtjHPQJtAVCbUjEAupAAETslFStkI5nJBO/Fd1nYhxg59GyAa4ZVESWe+zHiKnOqIy8RMQ+T036KJZMLVbGblMZX/yUjNR8dAUqqTTylPLQVbPQC1iJeRL2OfxI+OfWbCGGOm7W8onlHzPFMhLOYEs5YKGX40fg21l1Ea4dubjOdIEfldZwTLTrfsj1T/5021rNdbxyCKJA5U1B8LsOrkaxxMQyPp2NKXqiLLAamrxGM8FhEBHW98PIAxr9crwQNKdrIrRYIpu1YkSNimxzPb0E1kzvxTnWwxPCbO+d1qGyMzMqIYLauoZq60B2s77zcLafPzPoom0KZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvTGVuZ3RoIDEzNiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNj0EOAzEIA+95hZ9AIEB4z1ZVD9v/X0vYdtMLHsmAbFEGgSWHeIcb4dHbD99FNhVn45xfUiliIZhPcJ8wUxyNKXfyY4+AcZRqLKdoeF5Lzk3DFy13Ey2lrZeTGW+47pf3R5VtkQ1Fzy0LQtdskvkygQd8GJhHdeNppcfd9myv9vwAzmw0SQplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9MZW5ndGggMjQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvTGVuZ3RoIDk0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0xlbmd0aCAzNDEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRVJLbkQxCNu/U3CBSOGXkPO0qrqY3n9bm0zVzeAJYGx4y1OmZMqwuSUjJNeUT30iQ6ym/DRyJCKm+EkJBXaVj8drS6yN7JGoFJ/a8eOx9Eam2RVa9e7Rpc2iUc3KyDnIEKGeFbqye9QO2fB6XEi675TNIRzL/1CBLGXdcgolQVvQd+wR3w8droIrgmGway6D7WUy1P/6hxZc7333YscugBas577BDgCopxO0BcgZ2u42KWgAVbqLScKj8npudqJso1Xp+RwAMw4wcsCIJVsdvtHeAJZ9XehFjYr9K0BRWUD8yNV2wd4xyUhwFuYGjr1wPMWZcEs4xgJAir3iGHrwJdjmL1euiJrwCXW6ZC+8wp7a5udCkwh3rQAOXmTDraujqJbt6TyC9mdFckaM1Is4OiGSWtI5guLSoB5a41w3seJtI7G5V9/uH+GcL1z26xdL7ITECmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0xlbmd0aCAxNjQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZDHcQUxDEPvqgIlMIAK9azH8w/r/q+G9NNBehhCDGJPwrBcV3FhdMOPty0zDX9HGe7G+jJjvNVYICfoAwyRiavRpPp2xRmq9OTVYq6jolwvOiISzJLjq0AjfDqyx5O2tjP9dF4f7CHvE/8qKuduYQEuqu5A+VIf8dSP2VHqmqGPKitrHmraV4RdEUrbPi6nMk7dvQNa4b2Vqz3a7z8edjryCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0xlbmd0aCA3MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohngJggbRDFIBZEsZmJGUQdnAGRy+BKAwAl2xbJCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0xlbmd0aCA4MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9zDkSgDAIBdCeU/wjhMgi93Eci3j/VjDRBh6reqAhOIO6wa3hYMq6dBPvU+PVxpwSCah4Sk2Wugt61LS+1L5o4Lvr5kvViT/NzxedD7sdGd0KZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0xlbmd0aCAzOQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZDO40gAV8wp8CmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0xlbmd0aCAxNjMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvTGVuZ3RoIDMyMiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UbttxTAM7DUFFzAgfiXN4yBIkbd/mzvaqUjTvB9VXjKlXC51ySpZYfKlQ3WKpnyeZqb8DvWQ45ge2SG6U9aWexgWlol5Sh2xmiz3cAs2vgCaEnML8fcI8CuAUcBEoG7x9w+6WRJAGhT8FOiaq5ZYYgINi4Wt2RXiVt0pWLir+HYkuQcJcjFZ6FMORYopt8B8GSzZkVqc63JZCv9ufQIaYYU47LOLROB5wANMJP5kgGzPPlvs6upFNnaGOOnQgIuAm80kAUFTOKs+uGH7arvm55koJzg51q+iMb4NTuZLUt5XucfPoEHe+DM8Z3eOUA6aUAj03QIgh93ARoQ+tc/ALgO2Sbt3Y0r5nGQpvgQ2CvaoUx3K8GLszFZv2PzH6MpmUWyQlfXR6Q7K3KATYh5vZKFbsrb7Nw+zff8BXxl7ZAplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9MZW5ndGggODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0xlbmd0aCA1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHK4MrDQDhtA2YCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0xlbmd0aCAyNDMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVG7rQMxDOs9hRY4wPrZvnkueHjFZf82pJwEqURDFEnJw1O6ZMphfUpGSI4uD20aS2y6PDdCU4eKgqlrieqUq5mmzFMsTdDz3lmu5hjge1U31N/0iF4CkVGCVWGBDpA7uGD42WsmbFELIjGGUDOAacIKc7gSMQQZjLVnGJQqDE7VzypX+y+nZdgqsHgwnSI/sppop1+6HHjrKQdC2NyVu3ohTQjujQZjzCxcd6mynQAcTHSZiYxYvA3H0yEMDV6aBqxw1o2YILEbI6UPXgcZ07B3RR51txjxvlvGlLvVz31RfeZd7R8IwRsn+HsByhtdXgplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9MZW5ndGggMTYwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0xlbmd0aCAzMzQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVJLcsUgDNtzCl2gM/gH5DzpdLp4vf+2kpNFRg5g9DHlholKfFkgt6PWxLeNzECF4a+rzIXPSNvIOojLkIu4ki2Fe0Qs5DHEPMSC76vxHh75rMzJswfGL9l3Dyv21IRlIePFGdphFcdhFeRYsHUhqnt4U6TDqSTY44v/PsVzLQQtfEbQgF/kn6+O4PmSFmn3mG3TrnqwTDuqpLAcbE9zXiZfWme5Oh7PB8n2rtgRUrsCFIW5M85z4SjTVka0FnY2SGpcbG+O/VhK0IVuXEaKI5CfqSI8oKTJzCYK4o+cHnIqA2Hqmq50chtVcaeezDWbi7czSWbrvkixmcJ5XTiz/gxTZrV5J89yotSpCO+xZ0vQ0Dmunr2WWWh0mxO8pITPxk5PTr5XM+shORUJqWJaV8FpFJliCdsSX1NRU5p6Gf778u7xO37+ASxzfHMKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvTGVuZ3RoIDcwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMzNlMwULAwAhKmpoYK5kaWCimGXEA+iJXLBRPLAbPMLMyBLCMLkJYcLkMLYzBtYmykYGZiBmRZIDEgujK40gCYmhMDCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0xlbmd0aCAzMjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0xlbmd0aCAxOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKNDQgMCBvYmoKPDwgL0xlbmd0aCAxMzMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDM0MCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9MZW5ndGggMjUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8IC9MZW5ndGggMTc0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago0OCAwIG9iago8PCAvTGVuZ3RoIDc2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2MOw6AMAxD95zCR2h+JAdCiIHef6UptIv99CTbxdFgWpECt8DJ5D6p03LPJDt8EJsh5FcbWrWuytKaDIuajL8N391N1wumOBfACmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0xlbmd0aCAyMTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9CTVFRRFYrRGVqYVZ1U2FucyAvRmlyc3RDaGFyIDAgL0xhc3RDaGFyIDI1NQovRm9udERlc2NyaXB0b3IgMTQgMCBSIC9TdWJ0eXBlIC9UeXBlMyAvTmFtZSAvQk1RUURWK0RlamFWdVNhbnMKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXQovQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgL3NpeCAvc2V2ZW4KL2VpZ2h0IC9uaW5lIDcxIC9HIC9IIDkxIC9icmFja2V0bGVmdCA5MyAvYnJhY2tldHJpZ2h0IDk3IC9hIDk5IC9jIC9kIC9lIC9mCi9nIC9oIC9pIDEwNyAvayAxMTAgL24gMTEzIC9xIC9yIC9zIC90IC91IDEyMiAveiBdCj4+Ci9XaWR0aHMgMTMgMCBSID4+CmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0ZvbnROYW1lIC9CTVFRRFYrRGVqYVZ1U2FucyAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvQXNjZW50IDkyOSAvRGVzY2VudCAtMjM2IC9DYXBIZWlnaHQgMAovWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMzQyID4+CmVuZG9iagoxMyAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNiAwIG9iago8PCAvRyAxNyAwIFIgL0ggMTggMCBSIC9hIDE5IDAgUiAvYnJhY2tldGxlZnQgMjAgMCBSIC9icmFja2V0cmlnaHQgMjEgMCBSCi9jIDIyIDAgUiAvZCAyMyAwIFIgL2UgMjQgMCBSIC9laWdodCAyNSAwIFIgL2YgMjYgMCBSIC9maXZlIDI3IDAgUgovZm91ciAyOCAwIFIgL2cgMjkgMCBSIC9oIDMwIDAgUiAvaSAzMSAwIFIgL2sgMzIgMCBSIC9uIDM0IDAgUiAvbmluZSAzNSAwIFIKL29uZSAzNiAwIFIgL3BlcmlvZCAzNyAwIFIgL3EgMzggMCBSIC9yIDM5IDAgUiAvcyA0MCAwIFIgL3NldmVuIDQxIDAgUgovc2l4IDQyIDAgUiAvc3BhY2UgNDMgMCBSIC90IDQ0IDAgUiAvdGhyZWUgNDUgMCBSIC90d28gNDYgMCBSIC91IDQ3IDAgUgoveiA0OCAwIFIgL3plcm8gNDkgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4KL0EzIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAuOCAvY2EgMC44ID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9GMS1EZWphVnVTYW5zLW1pbnVzIDMzIDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvVHlwZSAvUGFnZXMgL0tpZHMgWyAxMSAwIFIgXSAvQ291bnQgMSA+PgplbmRvYmoKNTAgMCBvYmoKPDwgL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuOS4yLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuOS4yKQovQ3JlYXRpb25EYXRlIChEOjIwMjQxMDAyMDgxNjA2LTA0JzAwJykgPj4KZW5kb2JqCnhyZWYKMCA1MQowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxNTU2NyAwMDAwMCBuIAowMDAwMDE1MzAyIDAwMDAwIG4gCjAwMDAwMTUzMzQgMDAwMDAgbiAKMDAwMDAxNTQ3NiAwMDAwMCBuIAowMDAwMDE1NDk3IDAwMDAwIG4gCjAwMDAwMTU1MTggMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzQ1IDAwMDAwIG4gCjAwMDAwMDQ2NDYgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDA0NjI1IDAwMDAwIG4gCjAwMDAwMTM4NDcgMDAwMDAgbiAKMDAwMDAxMzY0MCAwMDAwMCBuIAowMDAwMDEzMTM3IDAwMDAwIG4gCjAwMDAwMTQ5MDAgMDAwMDAgbiAKMDAwMDAwNDY2NiAwMDAwMCBuIAowMDAwMDA0OTg2IDAwMDAwIG4gCjAwMDAwMDUxMzcgMDAwMDAgbiAKMDAwMDAwNTUxNyAwMDAwMCBuIAowMDAwMDA1NjYyIDAwMDAwIG4gCjAwMDAwMDU4MDMgMDAwMDAgbiAKMDAwMDAwNjEwOCAwMDAwMCBuIAowMDAwMDA2NDEyIDAwMDAwIG4gCjAwMDAwMDY3MzQgMDAwMDAgbiAKMDAwMDAwNzIwMiAwMDAwMCBuIAowMDAwMDA3NDExIDAwMDAwIG4gCjAwMDAwMDc3MzMgMDAwMDAgbiAKMDAwMDAwNzg5OSAwMDAwMCBuIAowMDAwMDA4MzEzIDAwMDAwIG4gCjAwMDAwMDg1NTAgMDAwMDAgbiAKMDAwMDAwODY5NCAwMDAwMCBuIAowMDAwMDA4ODQ5IDAwMDAwIG4gCjAwMDAwMDkwMjEgMDAwMDAgbiAKMDAwMDAwOTI1NyAwMDAwMCBuIAowMDAwMDA5NjUyIDAwMDAwIG4gCjAwMDAwMDk4MDcgMDAwMDAgbiAKMDAwMDAwOTkzMCAwMDAwMCBuIAowMDAwMDEwMjQ2IDAwMDAwIG4gCjAwMDAwMTA0NzkgMDAwMDAgbiAKMDAwMDAxMDg4NiAwMDAwMCBuIAowMDAwMDExMDI4IDAwMDAwIG4gCjAwMDAwMTE0MjEgMDAwMDAgbiAKMDAwMDAxMTUxMSAwMDAwMCBuIAowMDAwMDExNzE3IDAwMDAwIG4gCjAwMDAwMTIxMzAgMDAwMDAgbiAKMDAwMDAxMjQ1NCAwMDAwMCBuIAowMDAwMDEyNzAxIDAwMDAwIG4gCjAwMDAwMTI4NDkgMDAwMDAgbiAKMDAwMDAxNTYyNyAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDUxIC9Sb290IDEgMCBSIC9JbmZvIDUwIDAgUiA+PgpzdGFydHhyZWYKMTU3ODQKJSVFT0YK", + "image/svg+xml": "\n\n\n \n \n \n \n 2024-10-02T08:16:06.497623\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "text/plain": "
" }, "metadata": {}, "output_type": "display_data" @@ -547,7 +532,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 8, "id": "7cdc8c89c7104fffa095e18ddfef8986", "metadata": { "collapsed": false @@ -555,9 +540,9 @@ "outputs": [ { "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n \n \n \n \n 2024-10-01T22:13:30.718098\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNjIzLjE4NTEyNSAzMTkuMTYxMzUgXSAvQ29udGVudHMgOSAwIFIgL0Fubm90cyAxMCAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0xlbmd0aCAxMiAwIFIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnic7Z1dj2S3cYbv+1f0pQxELX5/XNqxrcQ3ga1FEkDwhbBayVJWcmxZNhLkx+d9q9jTZPHMaGd2NReLFbDCTE33OTxk8eHLYpHnk1+/+vs3L1/94dNfnf/5s9Mnt99e/nDy52/x7+uzO3+Lf/84+/On+Pf1yeG3704lxItv2YeMX1/Pv0bfL774mGF2y29/Op2+On3yS1zkB3zp09Mph4vPUb5ULznFmnHl5Pol1NX6erG6eCk5i3m6wmQdNwp6o69RbDzCpeEhcFtaTqVdYssth/nOkzFd3Ljx6VeohX+c/oL/u/PHDtfK9RIybtdrDfUcwqXn88vvTr96cfrkt/7s3fnFV1JJL748fX7+yF2c+8X5j+cXvzv95sXp9ycpx8nHeIm+1OLnAszWh0rgcVPfYk+tlVjepAjhoAi9XUKqpS4luBkfLECrF+9Ty7XnlN+kAGkvQCjwmYoKnwswGR8qQEDDu5RRUPz/jQpQ9gLE0C7eoRb7XILZ+lAR0FCXXgtbK5b0JkVoB0XoEbeALy2VMFsfLELzl+4qXRZ94w2K4BdXnBu0eNyH/YjdrPGH+6/zzfdf/vjy1ZfnL16ef/jbF3/9r/MPf/rmq1+cPXyioaQf/e38+af/8r9/3J/21ltTueQYU/Xs8A0d11gP2xwXqXKHFC41ltxzdj5tBUUvrq27Imi6PvnU/H8BCxyv6m4/vPzujAt8/OtX337x7z9+9sX3P3z83Tff//jD+dd/Pv/+oPi1Emo156X4N+vDxa/o5QV9Fw3b6psVP73T4ntXL7U7l5bi36wPF9+DtL3D/XOs5c2KH95t8WO7JPAvrNU/mQ8fAJ6dijwAOlUJPmUX8ePDffYhJ/alo9OUsjrxzfoTpSgZP/Yac8hudwN3XH0Hpej9UipwZWrjZv6JcvSMlm0uON/ag8U4YPitGCG6CwZF35ZS3KwPFyIEdH1XoqOEiA+W4gDkUymKu8A1U1krYzL/RDkwuMMnMrpBCQ83ygHNp3J0f8m5V1OMO+tPlALDay2BP95fAn8xMOc1PubVfEI/5pjhs780yLIHrvLnv7/66+sv/nu50vlAl0VWTEBFFgz84fzXV+f/OH9/DuffnfFIFFb4q8+lodYyagP+r/9V/KW63FqAn/fzHz49rypzEl1LtwYje8NYkGAOl5ZLklqr/ZKba7HC7C65uBACzC1TNETcwGP0bi5y6Hx96rg3RsdAxVQvEYXPYi5gVETfh7lAG/WUyTzvMJpW1xwqLqRLK9IhaEcllBY6bgqZW1vz+BF2D6lSIIFEj6HGs89ibmg8qAg8UUD9lxD047hmLK5WPBJg2hv4I7dFu3cUshSx+xwgpmmPGc4CQdvOHiIaX+16/eTZOuziuFNxqRf5OAbPCpAkPBVGYhQykUC43CUm1r6YAXBWNe31guemgvUQMhAQrUhpoL/Q4sHjqTzAgOLLeEaq+eSq92IPtZdOc4WvxRYc74ofXfNR7A39PubSi9jZqk0qAS3VUfWND4W6jCH4Qjt7RnRFzSn4JhRHRcOvmq9B7dAGUprgUOEhFxSZlwdhYqlihzeFCEeUpw34nIiJgC/34ErSp4K4817t8CcvVQWvvrQEf5LrBzgUrhL5WB7XSb3J5+F01StfPbjMwT6IHS7lHQZ/dLBO78fQTnuiQGuwwQ7HjOCKfD7BpRzc14tdalPum+FSLkJ96mhccAG5ToZPOXSjInaIvRLZWqGkS+jNVdSbK3B8NKhcB60F8ucq5piT19vWfEkd1YzqdKgGjwvKY0FHuu5yTmLHoIHaFnu5FOqUKnZX4aRs3dDDJbScIx8LYymkWFU7HY+8FztKEQuLz7lZQuHg1xQPrWXX1I6hEkOPV1GR0UyJ5QSpMXZlDou0B/Qv8aqI/kGhS6NvKSWxcfhCLwhSNR2ulelRcDK0Q0U302tHh/4t9orJQMYcB3ZMIhqYJZ+HqCwldLogQICyoheIHe2DXlbE7PpowYiWkukPS0On6PwI7Wh+VGTKYsevoAXtGO1RAZ3kchQ+GAvEXjGiAQRAlw7Ypcrla+E8rANdMLMoTj6NhgI3EloHZofeJ50WMvKScAlXzpi/odNV8fppGtFJWVeklU6fnX5/fgTkFfCfn4mjc7gkDBXu/OVpJv756cSPHc7WDojvtV0M8fE94ZolfsBk9ID44OQR8Qs65QHxcXXBwkZ8wLXtxOcMvB4QH12s9QPiY6rY4wHx0QhHwI/JDbLPwM/V600N72MvSlIDfDiqoMgAHz7a+877CmEfd9zjU0l6puF9ZqtvvEdDgtNaYyvvOe2p0fCeYyccuVjegzEpRRmaF957uJcquQX3qCQ0vQ4PM+4duzXGZot7DrUtyqg04x5IAs9cNbSH2VNKdUt7ghlN6XfaB4wB0scX2lcRENJUhvZo7yrdeaF9wSXREnmnfSrw3brR3qUcyw57yEknEsrAnmNYSxb26Aw+FnEFA/vkgbS6wx49MIkbG9gXVHGMO+zxkFUJOMMeHb8lL2PhDfYBjZb0pgvtCTDXpYMvtIeDYBgoG+3xEXA1HtDesUks7dH4Cb6Vd9pDJozLrLR3HPfDSntwurLz7LBH98ZzbbCHN2URGzPsCZiQ9SIL7FMq6nwr7D0EkbTqY2F/U/SeUIe3RZQrV+De5QRX7AXofAjq89TnxnRa4Un09ZnpNMNzaq4L0wM5nmtZkU4rilCkE96QTjMEQpGan5AeGjFbYk0r0mkvFLZhQTrNKWB0N0inHX6mimhCemiN82ZowxXptBeHIbuvTKc9opOktjCdZtRxFH+aoC5zwJQBkRXqtKP9ai0r1GkHeXo2Kp7dGpdUATVhnXaMDJiZrlhHV8dgAg0VVqwHaR3McsKK9dAAJVxe9PcN66g5lCCN296wDqkL5PQWDNah0y/kXzcynoHejgdU0N24jm+hnVHmsnI9oIs1dv64cj2gj+Xqhk69gZ3lgW+oNpzAHvjkQGisK9hp7+iS3YCdVA0JpW0r2GlH3YRSVrCLXUTOCnaxR3bqBexy+ciJ7Up22lEslQQT2aWYGeALK9lpxwww6jB5Izvt6LMtrmCXWughO6PiafeYfKeV66xM6Okk5Jm4TnsEBxTVg+uh4jaQzQrMG9cZgqnodJbr+A48Z0wcbljnZdDOsRqsy+VD1ZH8hnWagRAv06cJ6/rxO3F/h3XaWXci3Cas0475vrJo4jrteJjc+gp22j1B11ay0y+7V104kZ1mVIdKtwnttKc2ZMu7EfJnf5pBf34s6KH0j0gf0xqvUdJDo6ad9EUCIRb0gJbfQR/RREa7C+jp630HfcVMS9G6gh6jgjSdBX1NOgNYOY8pile5bDhPOVsOON9KXaU7rWgirxODFfOtpDEDWDGPUSRb7U47xpa0UR4dAm6hH18pD9aOQs6UBw5LEfmxQB6VzTrNFvLQlXDwZiHPGcN1qJsgDztEqMarZsjDDnR0adcZ8rC7kJN0jhnyGFsq5pLRiHfas0fpLeQ5FjHeVgzkYXeudellC+QxucNIp3p5hjwqFj0uVAt56lZ8vFvIo4PC0WS6tkA+SDtrrGmGPAZHB3sykAePMyauyUI+4PIYSk2shj/WDBlZLeS9BtODhTx6Zu5OYqML5T0DEhoFNZSvBQIqGMxzsEDzyZxqxnwj2YG+OGMeRtwkSZvMmAcaaqtlyPQJ853CIe6cxxjifKnVch7lAoV0uJg4D3Xm4Zzdcp5TaLjmxnl4I6anGlOaOQ95Brio3F85j0tqhNhwvnBtvlrOV0ZgvI3XyLiQgvYsA3q0chTd8HQRj2EafU9xDswX+BamTPCS5S9PCssn9HHoZZmqTEEatEACNkXlTkGaLDEymfBNMRo8UXH4b+W8z+gpGOX6inlMxRgwhvesmCcdIQuGIr6FaNAPUdCyBeUzOVIx7105Dz2DltsCNMXD0xy/uEZoCoqe6lD/twgNkQx91dKKebQ7qqVlmcfPIRp4GkqljzpFaNie6Hcaqp9CNIVeEYK3MZpCr+teYmBzjKYwuFy7TiKmGA3s9N5sY/K4ZPSgmonJw5xjjDYkDzPXLn1dMc/SgLxJte0UoymMABUVO3OMBqXhSkCIK+ZxD7RlGBp8itFUxpBBWxukwYNDNZRkQ/JAaWXUwgZpKKay0746B2nQJ+ES6lBzkIZ9uwBTYcU8fPzCQafWFfO01xq6zhVuQRohmRtThSlKQ/WMbuVtlIbthnroK+VpbnjYZoM0pHxLXUeRKUgjowXxslLeY3TBhCxLK85BGtgh10I0lKe9j6DiXYwGtgbB6GyMRmZdWaXWHKORgREF6CvkPQZqLovFlfH0UA81WEyIhjKDs5y4Mt5TrQCiVsvTDh54WSKZA/IUSbLwuiCeSU5cMqxGytNeMnPNVsR7nclXHaFuiKc9oa+ElfA01zZWMd5dTP4G9bfAfUKfazvuufy2xm8E90Undob2gEjacY/+EpMJyRP3sWvo1vIeNaii0/C+J9fzznt0X98OeJ9SV7vhPTSkRtNX4mOoSt3G5AsBh+7vN+KXNlZ/DPHhazoDN8THbEvXrQ3yY+awZ5FfGXcJopkN8tHHm9bOivyKvqSLATPy0Q86HsCG5SujZzmtyp5WxqR0TXhCfsVwCCQojCbkA9UB7DXCnmZYdeSYiQ/HYo6FFfZ8jgCtKKptIX66MCyqUaOZ+KjMABZtxC8U/Lp0bYif8VOwYXlVYSHZRVgSv4cRfjfEj6gXI+yF+MVryHElPurPeSPsaa+QouWA+CB60gFoRX69oX1FfgFrjpDPEa7syEdr+HJA/Mp5myU+KgSOo4uKd8hHE6J7Bot8zrV8cFLGBflAO8Dija6nnV/NYWc+4zFlQz7IMgarFfnQLV3DLivysx9SwSAfPlGcCd8I8zuF9wHzW/LiCJb5JbZ+xHwQVZeiV+iDnMG9XWzecb1PV1/jSXJGevKe8XL+ImuyqOmnZdswet1WyMNWO+qwr5SHWb5VV8pHZny3aiAPKzPdNLo+QT5SWqZkl11hxvQ4OLPsGtml8HMwjE+6+CLeMjM+OQmbJptok7iIMwKYM+MTk4p6GcH4O8bDDEb3lA3jE5Mi4a0meMNvYr7uuonR6xXz+PzEeNjRp6qugU6Mhz1CXnvLeNgToOQN4mmmIDQherGjSfTzN8bzrsmrnJ0Zz6cC3eQyM+NR+d3HOEL3N8jDDzBeBst4KIaOAdZZxsMOid4UhhPjYU/oqi4axsMeXb0m4NwYnxhM6i6ZCL18PqAbNsN42jETElebGc/7thot4pOIy7bl2cDOJfhmRD3MjQv2Ns+GtVBB9WYQDy/COKSYnBEPe4DPVavqE+VBqyUYxMPOxXZv82yYS11HGGJCPMyo7KzR8gnx/DjKWebQjZTlGmabEQ9Ks/uqHJ8QnzjfKaFZVS8xgRicCd2IHR/QGM2N8fgpwwmbzbNhIiX8tFvG87Ypa8R1ZjzsqKXgTOgG+gK9s2n3mRmfGP8FxaJhfGIyBpzLMh72RNSaGD3tBX72pPXXe4X9DfjntwA+HB6CdAN+0LnuinyQMgvBZuSz6gBMI+wjF/ViaSaOE7nInYJNriTye0zOrMsK84EFAcDKfCK221SbxEeHsLepNolAHG5imM/lVBFbhvlM4cgmkkMKdp8lULgwH324ApttZz44GdoB89HebbB9YT56bdf5wcp8lH0E/lfm46HGusIMfbpWH+uvM/SDrO/GZKDPbIqaduijW/bcxfln6MPeqrbJzPwEd8d1NmEPe0Dv0GXWGfpRBlwJJS/QZ7ws1E3YJ0bmuw7cC/Rxq4h+bEM5KVH/1WCzK2EPlHlW2MPOUICGzmfqA4lw72SWZWnHjUZW50T9xERenega6mM+mpsV9hyDYtC43kL9LCUWubhQH2Nlbc1t1M/MkCvdCvvE7LYxxhnsY+Jfk1mYlVGFs9clmMOxAPgdKZcT9tEJvPaThfqFSTtOZxMz9fFjhuCzwj5xwbZoWGmCfsXojNYvFvrkwxXKM/Qre4YvNpaTuL7b4hbMwZ1QGbpwukCfiVpDkC/QpzzWBfGF+RibGmbR3TK/cSUpSwjzbXR9HuuwpXNV1l2hz5xKAX7CGP1UXc9lEkkgmDmP6oqhmlVZmnExadIZ89wg1HWRccY8M5V7sOEbmnPNG+X56agzr5nyTIwDYC3lo6zLazx9gjzNmCEHw3g+DsYyca6Z8Xz61rqN3USZxqtUnBkvdTiSkWfGc6xEPQebUMmZUIB72wx6jouQnN7k3shIV0duzIx4NnkdkadV12OEznqZFfGZyjsYxKOauNi5IZ5djJc0iMcDokuNQPIcrmduKju/YbyngO9W1gfMVdBHlJAT4dFoGJ10U99M+MC4FhzBhm4Cl9XLlj4fmB3tNA93BjyumIJ3lu8w9562SD2xleBNNlIPOzO5NL3mhvcYuAwTvRX1sCcmpdvk+UjKeW/WYyWfGVOhZJJuuN0XfxthoYnu3Abc0siAmegeGWq8LtPe4M49ot2rup7YDjMEoubb3rE9jiijt2xn0m5IzQbq2RrVj6XeCe5R4oN9gzu+Wpn0nle6R2FhMYuxWo9VZ/kz3FmP3JxnozawYwzzxSp63SKkk68Z7rDDCUqyih4ViRlAdZbutHNHnqU7GwrEdO8u6+Y0o/78Nqjv3Fy/ob7FUmwUR3hVpKsY1BN2VtKT3owdbqwvbLuyw77AKTQws9Ievq5TyJX26IYaHjO0T5g4qehecZ8wW9bg9cp7tJaLNo5DO8S1Rpsm3lfGYVXFLbyv3HoXNc4y875yXqM56AvvuZMqaM7Zwvsqd4o2Vk970IWkmffsT73vq7O0oxNb3NOcQS2j6GmOI6Y94552MLXa1VkgoGNis4dxmFEZNSV5xj3tTHSzkp52PJ/JwREzkFtMDo7Yve8K8In3+LGNbMob7Wls0BQ2Tk97vW5ymnHPFbysHXfhfZFdHVv6PO3oX9EEcWiO3W3582L3urK38J7ZVaMmZ94XZjZqNHLhPe0pZJs+T7u7LhzOvJctXV1mFwvwaUf5bPq82J3vS5weRqA8RBvEEXtp1QZx1K6J2gvxac9NE15m4svng04tJuLTXL0OHDPypThZA1Mz8qXsuZr8G7VHdbMF+bQX10wC/ajL3E2epdZ91ND2gnza4XQ2UC9NG91bJtGD8iOXsrYTO7guwoYzF3gG5Z8cpwdKNPffQN4P11ghD7zpgtIKeRH/FvIkBJrLJuBEBg9b0qXOGfKs/qR5azPkszSFJhnOkGeAtrQd8iBj27dIwYzH8JukZz/Juj9jRnyQblg3xHvmmWq8dUE8V4GTrm3MiA/cdteD5rxMiA+cd/axjjEhPnCxOmjsc2Y8D8YJ7rr7ddolxSChD5um5y5atqvR9FLbGCr8Cnk0GoY5p3GDG+Mrh8tcq9kkxcBk1O3nc5YlmY52zyaVHl7LqfGIqUyE56piiM6m0nOxl/thncmy5Mo2oDOyNSfIc0H9LqQ9QT5zy0zQHQgz5DOfCp3eQj7TKcbOhBnyOTEfw2vM6Qb5zNuWYlPpuVkejqDJJzPks2Oml99CNp21rVOAOWLDbb5pLJLMERu4FuYpIzKzRGzAA01+WCI2mYJKty8vERvMAXz1I2v+yvjO8I7uApgZz8OX8KO3W6RQw/Dz7q2qR2VnltEbxmdurgMFTP4NqgA+lLtlPAPsqNRuZT1jKpjXNLshlrEZtL2OCXPMhjnQGCy2mA23QAfdzrbEbOREnu63oA0DV0kXKpegDddOoHLf6a7YG/DPTwe+477kDfghBV1pXgP1wITmAK9rs+gX0STWi5nHaBUDfB55FA+ArzMJ3SM0A7+Jy8gscgY+zGnsv16Az8SosQ115j3MHv1/E/V0hzTGh1XUd852wibqe22aRGFEPXcF5C2IA3sOurBnRD00m2YnGVHfufi7a/rOxVyTWS92F8fREauoB6lV5BlV39Boblf1ULR15OUsqr7hI80QX6dxAKUN4kj8rGpC6qLqufsmqScsqh52N7bZLLJe4nOlWejTPjZNLKqeUT6n+xQWYc9dbWUUZxb2VVNAkxX2TCWV88CMsK/MA9G03EXYy3adEZ2ahD2nrXQAK+yZygcJvwVyKteoqy4bzMq+crFM94ouyp7T37FHZFH2lYvIzmbWix1ap9oMHNpLcMWegiAwysGvyh5GFDqYDVRiR2/tNlAvk+6oJ1wsyr5yCTl5uzGW9lx1wWxW9tyACE/elH3l/sk8dlZNyp7DttdA8KLsmREfdmEPc4mp2AycKBtfumW+SNjk7QYqsWMk27IuJQQQdYHnrRJwrpRP23E3YpXo1ROFPZ6y+X1BNpax/LdyPqJSmznuhoNFL1ECVivnoehi3pJwOIiE68aqhfNMnso2Vs+1BOe2FVkhrldlZYP1uXV3EK2Hlg4a819Bn0H6soM+cZO8za1nk3JHrF2RpYvzjIwtWk85wDq2oGdstPQt0xIl6/TNZEmPeQzKUa20j9yd1IvZQyVRXZ6bZs4/4MQE9Co2fBNIBYblDehRr4UDezeg9xxN3VjAnUAvqjmNFMkJ9PR6CIdkz7tBR8fTdm/jN1zmA7DyQRoOR1NvSZ9QCxTfWxpO5IkGmsK1rMiieqobQfJ5RZYxXG7BMKTn4gcq2ZvzbhITUZvu71xWZMOF2+m2VEtZbs96dMEi7z03yI0tWrO+5/5c6elG38spAila0jO7oMduT0BgkkJPXXNHZtBz7oN6qgvo0W15GJWV95GPwZUFA3qmKKFYUsZlRRbF6ilGK+9l7R/TJZNryarkSUObvOd2tDE1XuQ9F1Eg6DZ57xkzvubbTPKeVTw8fJH3fJIe7VZZqXq2TrHyHnY/BuVF3jMjI/n+FNTfn4dzx/3t0JtHcB8PgY9t3C9tD+jADMdrNmrPzU1Rl45W7kNoF5FRK/fhN7puYriPmtP1LcN9Tt+qybAXM1zCZl/KaMPljF3gM0NvC+jQDGIfLNKix9ZuDr2hGVQea7fLIm1g9pU99YZ2oEwxvi7S8hyvYiM6Yo8jd3TGPheHeYSVxT7tbpzjMGOfu4C4wGq533jISuwmoiNm17w990Y6O4SUtwKfYzSXZKzAp921ZDNxaMeMQNMgZ4HPwGEdE4VZ4DeJFajSngV+4/E/GhyaBT4nmEWX8ReBD3vqI4tzFvi0h3EgwSzweVhJTsEefCPSowUd/maBT/s1lX4S+DBzx5y3Ap8z2zJ27M4Cvwk687ZUS7vX3L1F4MtMuOvoNwt8ppUUVVSLwOcMmVEvK/Bpd92ekKCS6pqrOHFfTvPJlvucT2MatYXum5xm2G2Kvdi9LsEvAp+SYeyemAW+hGOC3VUl0+868nxWfd8xNh3Ie+48cpb6Ml3fFmqpHOPYZbuqeznl1+/qHqJAMx+Muu+UguEt1f10HsKnp6dIeM480p5Gn9ATt1wbmku2m6VojlGPmlxRjkrw9QDlcJUWDkI1qbRc9lBNamOHvkF5duMQmZXkGb2r2L1SUQ4kG/tIV5QXzyOeNpQz8FrtXiluMAhQc9v6qxzmWYPNqWS+DU/FsttjJT01j6da822gS6qz22MlQRUzYrtXCvYCX99WYJlyyjPlbE4lW835bX8sBRGm59lKeCY9QirYYxAkGw/qom+xGrn+SLCfSE7ZNnZ6LSTnN8M4KXMmOXFTgy6GzijnAW8p7ouwxGjWJY0F5VzqaLoSuKAchBpp+usSLE9pdRvIpfP1ZEFe5Bw3TSxdl2B5nGe2+l3WnqK3ZyCovYzjP9c1WNSNJpebNVjPY8NsfJ7Fx2eSjc9zUgimhm0NNnOP40iwvwN5YtuPQ2dmkDteZGTpzyDn2kJQvzcgh3vkfQ2W0bDW8kGkpvpxRs1KcpKl2ER6mUhfhfeKcvhz1XFiRTlXsJLdIMsSw/EPYI6mGafErTDH7EaX4MwSbIfuE+n7zvT7TPafCs6wyXayp7YlUZK9TU+5NmAvUGB+BzuPgtw1OmY93R/EZtCIV+2+gh2NexCDp9lvsRmxu3ag0RPYlQ/IjnGjaWrkSnaUPuZdpKeSdZuLzaQscd8FK3avkaIV7KjJscy5avQEuO1BeBn1NJHLaPSUnU5FjUZPqR5qdJ7M1jaJnpifZhZddWhuqWyZNbRnf7RBiogaGTSLROdGqL6BnXZUj90FK3Y3FnBXic5ilgONjo6nR68YjQ63LHsuZZNlYz3ecdXo0HEtm+NtNFRZ27YLVuyoIBuEZ/fqVatt1eg8cG4PwtOOycQWhOc7Bniuwq7R0ZncFprRmXXtWzol7WmcTLNqdIZgil16lal4ruvplGIc58EZjR55QmfcNXpMugHAkD3yfLe+S3QevKHZO4tEZ7Kt22Lw44xBG5qRif6Y+y5kpz2HsgXhmzhR3MjOCEBWhbKgnXY/Dnib0S5xaD2RY0E77V7n1m+j0+t1ffW0ZE0ycfn631OD8AmwFeljgjFA1VEwpnrdvmmCMezHNruGdVXidua8xjPGuuQK+uC9S+txlWOiPU78Mout3MVmjjHT6RtkW7Ggl0z62s0xZmNhL7T1uErNJIpD665BeDxpscdViqZAeas97kCC89ltGZTSzduu4IscamI3RVGK5rF0tXA+c4ase0MXznNzeh9H2k+gD1S6Y1CbQc9txUynMqBHP+88FmA7cx6sy0n3bi0xeB7n45yzsZjMiCbKaUGfxM+CDcXIxpzreLGG4OFoPRyF4DkI2liMhODj2Hu6huB5YFIwZ1XKZi/ZVGM4z71h3FRjJDwj87XqAogJwUee27NthQ3cMzb2Gcwh+ICPjCO5TQiep6pvafOcbmFUVmjNIXh/uTt5aw7BM1Xdj7Mt5wwbhqtjdsuJ8zRi5lTsWitjzMHrSbVLCN5zTlXtKWYSq2aVWc5LDDvpmbRzCJ5nKbbWrILXHSFpy6LUkPdQ5GsIPsTRyU0IHmwpuiS8huBRwbqvzYTg0TG06k0InukmfcuwgZ0Jte80cb5OSTVPhj78FRTdI/BOD0W0Efis2+QN9HmCgD39QNZpfT2IwPMA7m2TlPT0ka5o1L1rxR+o+0AtdqDuk9PUOKvuR4qK0fY1apKE1fY8X3nfJYVe4g7i7xkktW8ZoRlq19Vd2oM+9Sj8zmBIPpD2+ZrTZqQ9Jg7j/SCrtGeKa9my5rmfiE+1aftSRla70faFG/kPwu/MYTyQ9nwrll10pRn9MthFV9r5Kopd2GNC2NtB7L22MoT3Kuybs6dWihVFDltuDVMSS91za5qkEnW74kp7QfVtm6S4nz6ruFxlPYNx3u6BpZ2HTm1J841bDg9D750ZvW2X9X1M/YyqRw9WYK6injsqsn2/CEODrqvqMguu6MTjbIIpn9LFpmvgi6jnWZMjjcjEa/hyDd1PNKt6Oc7d103VM0ES3mr2wDJMyY0czar6zrODfdziNZ3b05pGzWdVzxPL/ThCc1b1XQalbmlPe+XLY6yqZ1op+Jqtqu9covJbPqUcA8CQ5Fuqejfn1owjzLh+xqO9lfb5ia+S0g1TB7I+Ba/7MW1gPgXpfSZ+E0bikonf8J0d5hR6tfe6vUpKQxF60LchfK4j3GMIz90aB5F5+GN1B0mUqfeSDhifAQlnZT2pnaM97EDgXHR3tN0IC9l5EJeHi4+5xMr4yh0C5nRi5RhUkt8Z330I9gx67WeujQ1TE+P51srsbdI8w/jo/N0eYpbkpSuD2nNc3jNHZIB1jssHxnXc9m6RyNMKRwbKDHkeStbS9iYphpJT9HYjLMzyUo0N8oUdN8YthVJ2/4yEnnVvFPrNfmol7SXpu39MCiXPXh0H2SwplM6HTdXLx6/vwVoD8+jxsW3RG+4DG4rWbo5KKbotelMknz5uK6wy6WnhYHMUJLAu85vAPOcYbgN94nFEI5n8DvR8+UwY64sT6ANPvSjjRSSzrE9MACn7WQdejooMW2YNX/t6ffPUAnq0bG7bEqsA+rr0uoRveuLbuizoqQ/iOJlmDd+Uct0PsIZvck1j9rGGb7K8TcqCfgRAt8g8VavXZMx3JuvdnFnzZOqj47U9cz7FpOd1GurHpA9tqB+jnvVll2ODurOl/jjoy0A/jGPkLPTRp7J5f6CONNWZE+nVHsbBuwb6PLPVHms2AsHVvHpE7aMvmqA9btft+wM1PjzyO03QHn0+bbEc2jHr2pZjZSeDnh9usI8RcZzEs2KfJ3T5A2kfOR6kXdozIazv0p7b5+NB2J59ZT/XTN5Ze5BXAydWUWCkfeT5oAd5NZEHMR0E7fGkodljzcTu+545z+lmG6PKqu4xDR1qfVX3MR/kU0r0sflmT7gR+34AAq1e06hNyJ7n0m2rsbQnPWvVhuyjy9v5NhKXLn2E5teQfeC567u4Z+pD2vLmaS9jt6YJ2fME+y1vnrHWVtuaNy9B7LHD1YTsnddELROyD1y22HbE0h51scrE7ANZtsfs+ZLNLZ1S7EwA2aEfKt/wvkOf7zWxbx5RO+cJO/QDCm9fIKh29LBN3TN/brxazMbsc25zLIei3Z2/Pcvrbw2YDwaE72Yj3w1GPOnVUDw2jvn4bF0/f3j1o4vYT99d5qGrf/LLeP76Bzwa5iTnr/FPMv7Pn/K30yllBiCznmLCyamewFAICWt+DTPTxBsT625mGu8+2+XlbOj7s5WpAfLRl6fJTJ+fL3w18yWlPfFgyel2tF5vF+ePXi88PcjN/BpmOpUcDHkzJ2722+42W++KhgvfzLcHeb2Yb0893e5WQYd1/PL0J743+ZNfBraOzBjhfPsLiN/0dZQnuCkmPbcn8LIoLb5RDsx4gnpohss46QrDV+Ap+Hl+uTNIfP0iOTeeR17LLPnwsejL1Xleqfjtiy+n9zV/5H9xfvHtiYd1MfVUziqXNzh/9H/yhygxx3R76/pHTuzH71u/3mJ/7fqP338T6m+avnhdvgm9EaEJGGvVK9wMnVF+pkryWvIa9U9+Gz7+7MW//udn3/zvv33/6rP/+e4Pr77mNWVb2u2aU2kwfvaeIe/Wh7+vZP36Svh7XmX0xk5gcvomJ+C7XA6c4GZenGA2ixOoA3x+Lc/DjlD7czkCX1Zc7i4tf/in8QXPBXwn7wvXP5zv+8NX4w85YPTEmHp3j2/kDxBUlNAu3v7wt/fbC+97WeJPvENr9jaeBn/gbXfm1dsm8+OQU/zP72n+/W7s+96e9tSWT/Ww5e/Ma8tP5sdzhuu9z9P6Hzjz83LmqS/4mB0v9EPHuzOvjjeZH4cc5kj83E4X3u92v1/lvJkTPKBy/KHUvZlXJ/D+LejjnkHuhg/0eRb6PO0U8snxfD+U1zfz4niz+VH08e0ZpHV8v9v9Xvq8oRPcTx95bc+BE9RD1TubH00fvrDomRzhA31+bvo87cTU2fHyoei+mVfHy/WJ9MnPILjT+93u99LnDZ3gAfrEQwF8M69OEPtb0Cc+gwhOH+jzPPR5ysFumceX7OHlnA/Mr0+5HJp/Gj6Z7+t7xvByfr+b/X74PNYHTqsPzNHlyQfmMPLkA4+PLs9+8BzR5fyBPc8z73rSqTOz402B5tnxpojy7HiPCjTPTvccgebyfrf7/fOuN3OC0/1OMMWcZyeYgsuzEzw65jw7wnPEnMsH+jwLfR7YMz971xRYnr1riiDP3vWowPLsWc8RWK7vd+Pei5g3bGl/qGTnMPHc0o+OHs+t/RzR4/qBI8/CkSdt3Jv8bg4eT343R4knv3tc8HjyuWcJHrf3u9nvJcyjfcDMoObY8ewD9VDIPj52PPvBc8SO2wf2PAt7nra7YHa8fCie5yDx7HiPih3PTvccseP+frf7vfB5Qye4fwY1x45nJ4iHGvfxsePZEZ4jdtw/0Odn88Lfn/4fGmHUsgplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjEwMzc0CmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9MZW5ndGggMjQ3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSW7EMAy7+xX8wACWrMV5T4pBD+3/ryUdFO3BECNLXOLuxEQWXrZQ10KH48NGXgmbge+D1pz4GrHiP9pGpJU/VFsgEzFRJHRRNxr3SDe8CtF+pIJXqvdY8xF3K81bOnaxv/fBtOaRKqtCPOTYHNlIWtdE0fE9tN5zQ3TKIIE+NyEHRGmOXoWkv/bDdW00u7U2syeqg0emhPJJsxqa0ylmyGyox20qVjIKN6qMivtURloP8jbOMoCT44QyWk92rCai/NQnl5AXE3HCLjs7FmITCxuHtB+VPrH8fOvN+JtpraWQcUEiNMWl32e8x+d4/wCVT1wmCmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0xlbmd0aCA3OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNzVSMFCwtAASZqYmCuZGlgophlxAPoiVy2VoaQ5m5YBZJsYGQJapqSkSCyIL0wthweRgtLGJOdQEBAskB7Y2B2ZbDlcGVxoA1pQcDAplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9MZW5ndGggMzA3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCA1NiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNjZXMFAwNDJX0DUyNlUwMjRQMDczUUgx5IIxc8EssGwOF1whhAmSz4GrzOHK4EoDAGs6D4cKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDczIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDO2NFAwULAwU9A1NDZUMLI0VjA3M1BIMeQCCoFYuVwwsRwwy8wSxDI0N0Ni6ZoZQmWRWCDjcrhgBufAzMvhyuBKAwAeiRaVCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCA2OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwztjRQMFCwNFfQNTQ2VDA2MFEwNzNQSDHkgjFzwSywbA4XTB2EZQZiGBmaILHMgMaBJeEMkBk5cNNyuDK40gD6qRZFCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0xlbmd0aCAyMzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbsQwDLv7FfzAANbuvCfFoIf2/9dSyhQIQCW2uCViYyMCLzH4OYjc+JI1oyZ+Z3JX/CxPhUfCreBJFIGX4V52gssbxmU/DjMfvJdWzqTGkwzIRTY9PBEy2CUQOjC7BnXYZtqJviHhsyNSzUaW09cS9NIqBMpTtt/pghJtq/pz+6wLbfvaE052e+pJ5ROI55aswGXjFZPFWAY9UblLMX2Q6myhJ6G8KJ+DbD5qiESXKGfgicHBKNAO7LntZ+JVIWhd3adtY6hGSsfTvw1NTZII+UQJZ7Y07hb+f8+9vtf7D04hVBEKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvTGVuZ3RoIDY4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwUDA3V9A1NDRVMDIyUDA0MlFIMeQyNDQHM3O5YII5YJaJAZBhCCTBGnK4YFpzwDogslCtOVwZXGkAcaISZwplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9MZW5ndGggMjMxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVPOZIEIQzLeYU+MFUY20C/p6e2Ntj5f7qSmU6Q8CHJ0xMdmXiZIyOwZsfbWmQgZuBTTMW/9rQPE6r34B4ilIsLYYaRcNas426ejhf/dpXPWAfvNviKWV4Q2MJM1lcWZy7bBWNpnMQ5yW6MXROxjXWtp1NYRzChDIR0tsOUIHNUpPTJjjLm6DiRJ56L7/bbLHY5fg7rCzaNIRXn+Cp6gjaDoux57wIackH/Xd34HkW76CUgGwkW1lFi7pzlhF+9dnQetSgSc0KaQS4TIc3pKqYQmlCss6OgUlFwqT6n6Kyff+VfXC0KZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0xlbmd0aCAzOTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVJLbsVACNvnFFyg0vCbz3lSVd28+29rQ1KpKryJMcYwfcqQueVLXRJxhcm3Xq5bPKZ8LltamXmIu4uNJT623JfuIbZddC6xOB1H8gsynSpEqM2q0aH4QpaFB5BO8KELwn05/uMvgMHXsA244T0yQbAk5ilCxm5RGZoSQRFh55EVqKRQn1nC31Hu6/cyBWpvjKULYxz0CbQFQm1IxALqQABE7JRUrZCOZyQTvxXdZ2IcYOfRsgGuGVRElnvsx4ipzqiMvETEPk9N+iiWTC1Wxm5TGV/8lIzUfHQFKqk08pTy0FWz0AtYiXkS9jn8SPjn1mwhhjpu1vKJ5R8zxTISzmBLOWChl+NH4NtZdRGuHbm4znSBH5XWcEy0637I9U/+dNtazXW8cgiiQOVNQfC7Dq5GscTEMj6djSl6oiywGpq8RjPBYRAR1vfDyAMa/XK8EDSnayK0WCKbtWJEjYpscz29BNZM78U51sMTwmzvndahsjMzKiGC2rqGautAdrO+83C2nz8z6KJtCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0xlbmd0aCAxMzYgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTY9BDgMxCAPveYWfQCBAeM9WVQ/b/19L2HbTCx7JgGxRBoElh3iHG+HR2w/fRTYVZ+OcX1IpYiGYT3CfMFMcjSl38mOPgHGUaiynaHheS85NwxctdxMtpa2XkxlvuO6X90eVbZENRc8tC0LXbJL5MoEHfBiYR3XjaaXH3fZsr/b8AM5sNEkKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUmKAzAMu+cV+kAhXpO8p0OZQ+f/18oOhTkECa+Sk5aYWAsPMYQfLD34kSFzN/0bfqLZu1l6ksnZ/5jnIlNR+FKoLmJCXYgbz6ER8D2haxJZsb3xOSyjmXO+Bx+FuAQzoQFjfUkyuajmlSETTgx1HA5apMK4a2LD4lrRPI3cbvtGZmUmhA2PZELcGICIIOsCshgslDY2EzJZzgPtDckNWmDXqRtRi4IrlNYJdKJWxKrM4LPm1nY3Qy3y4Kh98fpoVpdghdFL9Vh4X4U+mKmZdu6SQnrhTTsizB4KpDI7LSu1e8TqboH6P8tS8P3J9/gdrw/N/FycCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0xlbmd0aCA5NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjcERwCAIBP9UQQkKCtpPJpOH9v+NEDJ8YOcO7oQFC7Z5Rh8FlSZeFVgHSmPcUI9AveFyLcncBQ9wJ3/a0FScltN3aZFJVSncpBJ5/w5nJpCoedFjnfcLY/sjPAplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9MZW5ndGggMTY0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQx3EFMQxD76oCJTCACvWsx/MP6/6vhvTTQXoYQgxiT8KwXFdxYXTDj7ctMw1/RxnuxvoyY7zVWCAn6AMMkYmr0aT6dsUZqvTk1WKuo6JcLzoiEsyS46tAI3w6sseTtrYz/XReH+wh7xP/KirnbmEBLqruQPlSH/HUj9lR6pqhjyorax5q2leEXRFK2z4upzJO3b0DWuG9las92u8/HnY68gplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9MZW5ndGggNzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIZ4CYIG0QxSAWRLGZiRlEHZwBkcvgSgMAJdsWyQplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9MZW5ndGggODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPcw5EoAwCAXQnlP8I4TIIvdxHIt4/1Yw0QYeq3qgITiDusGt4WDKunQT71Pj1cacEgmoeEpNlroLetS0vtS+aOC76+ZL1Yk/zc8XnQ+7HRndCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0xlbmd0aCA0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0xlbmd0aCAzOQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZDO40gAV8wp8CmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0xlbmd0aCAxNjMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvTGVuZ3RoIDMyMiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UbttxTAM7DUFFzAgfiXN4yBIkbd/mzvaqUjTvB9VXjKlXC51ySpZYfKlQ3WKpnyeZqb8DvWQ45ge2SG6U9aWexgWlol5Sh2xmiz3cAs2vgCaEnML8fcI8CuAUcBEoG7x9w+6WRJAGhT8FOiaq5ZYYgINi4Wt2RXiVt0pWLir+HYkuQcJcjFZ6FMORYopt8B8GSzZkVqc63JZCv9ufQIaYYU47LOLROB5wANMJP5kgGzPPlvs6upFNnaGOOnQgIuAm80kAUFTOKs+uGH7arvm55koJzg51q+iMb4NTuZLUt5XucfPoEHe+DM8Z3eOUA6aUAj03QIgh93ARoQ+tc/ALgO2Sbt3Y0r5nGQpvgQ2CvaoUx3K8GLszFZv2PzH6MpmUWyQlfXR6Q7K3KATYh5vZKFbsrb7Nw+zff8BXxl7ZAplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9MZW5ndGggMjE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QuY0EMQzLXYUaWMB67alnFotLpv/0SPn2ItEWRVIqNZmSKS91lCVZU946fJbEDnmG5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+uco+fXosbPsPxQxSRkg7mNf9Y/fJzDa9TjyeRbm++4l6cqQ4DERySmrwjXVixLhIRaTVBTc/AWi2Au7de/hu0I7oMQPaJxHGaUo6hv2twpc8v5SdT2AplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9MZW5ndGggODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0xlbmd0aCAyMzkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVDJbQQxDPu7CjUwwOgcux4Hizyy/X9DygmSl2hL4qHylFuWymX3IzlvybrlQ4dOlWnybtDNr7H+owwCdv9QVBCtJbFKzFzSbrE0SS/ZwziNl2u1juepe4RZo3jw49jTKYHpPTLBZrO9OTCrPc4OkE64xq/q0zuVJAOJupDzQqUK6x7UJaKPK9uYUp1OLeUYl5/oe3yOAD3F3o3c0cfLF4xGtS2o0WqVOA8wE1PRlXGrkYGUEwZDZ0dXNAulyMp6QjXCjTmhmb3DcGADy7OEpKWtUrwPZQHoAl3aOuM0SoKOAMLfKIz1+gaq/F43CmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0xlbmd0aCA1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHK4MrDQDhtA2YCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0xlbmd0aCAxNjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA5EgMxCARzvYInSFyC96zLtcH6/6kH1kei6QI0HLoWTcp6FGg+6bFGobrQa+gsSpJEwRaSHVCnY4g7KEhMSGOSSLYegyOaWLNdmJlUKrNS4bRpxcK/2VrVyESNcI38iekGVPxP6lyU8E2Dr5Ix+hhUvDuDjEn4XkXcWjHt/kQwsRn2CW9FJgWEibGp2b7PYIbM9wrXOMfzDUyCN+sKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvTGVuZ3RoIDMzNCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtUktyxSAM23MKXaAz+AfkPOl0uni9/7aSk0VGDmD0MeWGiUp8WSC3o9bEt43MQIXhr6vMhc9I28g6iMuQi7iSLYV7RCzkMcQ8xILvq/EeHvmszMmzB8Yv2XcPK/bUhGUh48UZ2mEVx2EV5FiwdSGqe3hTpMOpJNjji/8+xXMtBC18RtCAX+Sfr47g+ZIWafeYbdOuerBMO6qksBxsT3NeJl9aZ7k6Hs8Hyfau2BFSuwIUhbkzznPhKNNWRrQWdjZIalxsb479WErQhW5cRoojkJ+pIjygpMnMJgrij5wecioDYeqarnRyG1Vxp57MNZuLtzNJZuu+SLGZwnldOLP+DFNmtXknz3Ki1KkI77FnS9DQOa6evZZZaHSbE7ykhM/GTk9Ovlcz6yE5FQmpYlpXwWkUmWIJ2xJfU1FTmnoZ/vvy7vE7fv4BLHN8cwplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9MZW5ndGggNzAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzM2UzBQsDACEqamhgrmRpYKKYZcQD6IlcsFE8sBs8wszIEsIwuQlhwuQwtjMG1ibKRgZmIGZFkgMSC6MrjSAJiaEwMKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDMyMCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UktuBTEI288puECl8E/O86qqi777b2sTvRVMMGDjKS9Z0ku+1CXbpcPkWx/3JbFC3o/tmsxSxfcWsxTPLa9HzxG3LQoEURM9WJkvFSLUz/ToOqhwSp+BVwi3FBu8g0kAg2r4Bx6lMyBQ50DGu2IyUgOCJNhzaXEIiXImiX+kvJ7fJ62kofQ9WZnL35NLpdAdTU7oAcXKxUmgXUn5oJmYSkSSl+t9sUL0hsCSPD5HMcmA7DaJbaIFJucepSXMxBQ6sMcCvGaa1VXoYMIehymMVwuzqB5s8lsTlaQdreMZ2TDeyzBTYqHhsAXU5mJlgu7l4zWvwojtUZNdw3Duls13CNFo/hsWyuBjFZKAR6exEg1pOMCIwJ5eOMVe8xM5DsCIY52aLAxjaCaneo6JwNCes6VhxsceWvXzD1TpfIcKZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvTGVuZ3RoIDE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwgMMUQ640AB3mA1IKZW5kc3RyZWFtCmVuZG9iago0NyAwIG9iago8PCAvTGVuZ3RoIDEzMyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFj0sOBCEIRPecoo7Axx/ncTLphXP/7YCdbhNjPYVUgbmCoT0uawOdFR8hGbbxt6mWjkVZPlR6UlYPyeCHrMbLIdygLPCCSSqGIVCLmBqRLWVut4DbNg2yspVTpY6wi6Mwj/a0bBUeX6JbInWSP4PEKi/c47odyKXWu96ii75/pAExCQplbmRzdHJlYW0KZW5kb2JqCjQ4IDAgb2JqCjw8IC9MZW5ndGggMzQwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSOW4EMQzr/Qp9IIBu2+/ZIEiR/L8NqdkUA3F0UpQ7WlR2y4eFVLXsdPm0ldoSN+R3ZYXECcmrEu1ShkiovFYh1e+ZMq+3NWcEyFKlwuSk5HHJgj/DpacLx/m2sa/lyB2PHlgVI6FEwDLFxOgals7usGZbfpZpwI94hJwr1i3HWAVSG9047Yr3oXktsgaIvZmWigodVokWfkHxoEeNffYYVFgg0e0cSXCMiVCRgHaB2kgMOXssdlEf9DMoMRPo2htF3EGBJZKYOcW6dPTf+NCxoP7YjDe/OirpW1pZY9I+G+2Uxiwy6XpY9HTz1seDCzTvovzn1QwSNGWNksYHrdo5hqKZUVZ4t0OTDc0xxyHzDp7DGQlK+jwUv48lEx2UyN8ODaF/Xx6jjJw23gLmoj9tFQcO4rPDXrmBFUoXa5L3AalM6IHp/6/xtb7X1x8d7YDGCmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0xlbmd0aCAyNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNTAgMCBvYmoKPDwgL0xlbmd0aCAxNzQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTZBJDkMhDEP3nMIXqIQzwOc8v6q6aO+/rUMHdYH85CBwPDzQcSQudGTojI4rmxzjwLMgY+LROP/JuD7EMUHdoi1Yl3bH2cwSc8IyMQK2RsnZPKLAD8dcCBJklx++wCAiXY/5VvNZk/TPtzvdj7q0Zl89osCJ7AjFsAFXgP26x4FLwvle0+SXKiVjE4fygeoiUjY7oRC1VOxyqoqz3ZsrcBX0/NFD7u0FtSM83wplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvTGVuZ3RoIDU2Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nOOysFQwNjRWyOUyMjJXMDe1VMjhMjY0gLIMzY3AshAxXUNjQyATpBDKhGrO4crgSgMAC7cOSwplbmRzdHJlYW0KZW5kb2JqCjUyIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvTGVuZ3RoIDU2Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nOMyNjBUMDY0VsjlMjQzVtA1NDZUyOGyMICxjAwtwNJgMXNTSyADpA7CgunN4crgSgMAA/cOOAplbmRzdHJlYW0KZW5kb2JqCjUzIDAgb2JqCjw8IC9MZW5ndGggNzUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicM7U0UjBQMDYAEqZmRgqmJuYKKYZcQD6IlctlaGQKZuVwGVmaKVhYABkmZuZQIZiGHC5jU3OgAUBFxqZgGqo/hyuDKw0AlZAS7wplbmRzdHJlYW0KZW5kb2JqCjU0IDAgb2JqCjw8IC9MZW5ndGggNzYgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPYw7DoAwDEP3nMJHaH4kB0KIgd5/pSm0i/30JNvF0WBakQK3wMnkPqnTcs8kO3wQmyHkVxtata7K0poMi5qMvw3f3U3XC6Y4F8AKZW5kc3RyZWFtCmVuZG9iago1NSAwIG9iago8PCAvTGVuZ3RoIDIxNSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0JNUVFEVitEZWphVnVTYW5zIC9GaXJzdENoYXIgMCAvTGFzdENoYXIgMjU1Ci9Gb250RGVzY3JpcHRvciAxNCAwIFIgL1N1YnR5cGUgL1R5cGUzIC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdCi9DaGFyUHJvY3MgMTYgMCBSCi9FbmNvZGluZyA8PCAvVHlwZSAvRW5jb2RpbmcKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQ0IC9jb21tYSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUKL3NpeCAvc2V2ZW4gL2VpZ2h0IC9uaW5lIDcxIC9HIC9IIDkxIC9icmFja2V0bGVmdCA5MyAvYnJhY2tldHJpZ2h0IDk3IC9hIDk5Ci9jIC9kIC9lIC9mIDEwNCAvaCAvaSAxMDcgL2sgL2wgMTEwIC9uIC9vIC9wIDExNCAvciAvcyAvdCAvdSAvdiAxMjIgL3ogMTI0Ci9iYXIgXQo+PgovV2lkdGhzIDEzIDAgUiA+PgplbmRvYmoKMTQgMCBvYmoKPDwgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTM0MiA+PgplbmRvYmoKMTMgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTYgMCBvYmoKPDwgL0cgMTcgMCBSIC9IIDE4IDAgUiAvYSAxOSAwIFIgL2JhciAyMCAwIFIgL2JyYWNrZXRsZWZ0IDIxIDAgUgovYnJhY2tldHJpZ2h0IDIyIDAgUiAvYyAyMyAwIFIgL2NvbW1hIDI0IDAgUiAvZCAyNSAwIFIgL2UgMjYgMCBSCi9laWdodCAyNyAwIFIgL2YgMjggMCBSIC9maXZlIDI5IDAgUiAvZm91ciAzMCAwIFIgL2ggMzEgMCBSIC9pIDMyIDAgUgovayAzMyAwIFIgL2wgMzQgMCBSIC9uIDM2IDAgUiAvbmluZSAzNyAwIFIgL28gMzggMCBSIC9vbmUgMzkgMCBSIC9wIDQwIDAgUgovcGVyaW9kIDQxIDAgUiAvciA0MiAwIFIgL3MgNDMgMCBSIC9zZXZlbiA0NCAwIFIgL3NpeCA0NSAwIFIgL3NwYWNlIDQ2IDAgUgovdCA0NyAwIFIgL3RocmVlIDQ4IDAgUiAvdHdvIDQ5IDAgUiAvdSA1MCAwIFIgL3YgNTMgMCBSIC96IDU0IDAgUgovemVybyA1NSAwIFIgPj4KZW5kb2JqCjYwIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTEwMDAgLTM2MyAxNTAzIDE1NjYgXQovTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UDGOBDEI6+cVfCBSCGCS95x0umLv/+0aZnY7y05s42vohmRM+b+GQhu+HjhdhqYLkDLWXAI78nONZVOgSg5L4mwZNmcDiqZ4OFOCQ+Ah4O8SYxPS1nAIaGuZ9Jotbr5Tk+F0w5oEy5jZojsEXhzLIArsAp0ZRjGZGcmSm5lxvAHFcmoOXiJrA2QQLfIXvMRTmVkgPqfk0oavG4IVRrI0Nksij+RdHMGxWKGjasARz6jVLfzmnAm5ao+DTzfzvNc1zomomfuq7JnjPJxl9x1LT19Q4uSHQ1Hblv76zfy7ft88LlhnCmVuZHN0cmVhbQplbmRvYmoKNTggMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9KWUhUR0krU1RJWFNpemVPbmVTeW0tUmVndWxhciAvRmlyc3RDaGFyIDAKL0xhc3RDaGFyIDI1NSAvRm9udERlc2NyaXB0b3IgNTcgMCBSIC9TdWJ0eXBlIC9UeXBlMwovTmFtZSAvSllIVEdJK1NUSVhTaXplT25lU3ltLVJlZ3VsYXIgL0ZvbnRCQm94IFsgLTEwMDAgLTM2MyAxNTAzIDE1NjYgXQovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvQ2hhclByb2NzIDU5IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nIC9EaWZmZXJlbmNlcyBbIF0gPj4gL1dpZHRocyA1NiAwIFIgPj4KZW5kb2JqCjU3IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0pZSFRHSStTVElYU2l6ZU9uZVN5bS1SZWd1bGFyCi9GbGFncyAzMiAvRm9udEJCb3ggWyAtMTAwMCAtMzYzIDE1MDMgMTU2NiBdIC9Bc2NlbnQgMTU4OCAvRGVzY2VudCAtMzYzCi9DYXBIZWlnaHQgMCAvWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMDAwID4+CmVuZG9iago1NiAwIG9iagpbIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MAoyNTAgMjUwIDI1MCA0NjggNDY4IDI1MCAyNTAgMjUwIDI1MCAyNTAgNTc5IDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAKMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAzODMgNTc5IDM4MwoyNTAgMTAwMCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAKMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCA1NzUgMjUwIDU3NSAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgNTYwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MAoyNTAgMjUwIDU1OCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAKMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MAoyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAKMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgXQplbmRvYmoKNTkgMCBvYmoKPDwgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE1IDAgUiAvRjIgNTggMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAwIC9jYSAxID4+Ci9BMiA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAxID4+Ci9BMyA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAwLjggL2NhIDAuOCA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy1taW51cyAzNSAwIFIgL0YxLURlamFWdVNhbnMtdW5pMjdFOCA1MSAwIFIKL0YxLURlamFWdVNhbnMtdW5pMjdFOSA1MiAwIFIgL0YyLVNUSVhTaXpPbmVTeW1SZWctdW5pMDMwMyA2MCAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjYxIDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjkuMikKL0NyZWF0aW9uRGF0ZSAoRDoyMDI0MTAwMTIyMTMzMC0wNCcwMCcpID4+CmVuZG9iagp4cmVmCjAgNjIKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMjQ2ODUgMDAwMDAgbiAKMDAwMDAyNDMxMyAwMDAwMCBuIAowMDAwMDI0MzU2IDAwMDAwIG4gCjAwMDAwMjQ0OTggMDAwMDAgbiAKMDAwMDAyNDUxOSAwMDAwMCBuIAowMDAwMDI0NTQwIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MyAwMDAwMCBuIAowMDAwMDEwODE0IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAxMDc5MiAwMDAwMCBuIAowMDAwMDIwODI5IDAwMDAwIG4gCjAwMDAwMjA2MjIgMDAwMDAgbiAKMDAwMDAyMDA5MCAwMDAwMCBuIAowMDAwMDIxODgyIDAwMDAwIG4gCjAwMDAwMTA4MzQgMDAwMDAgbiAKMDAwMDAxMTE1NCAwMDAwMCBuIAowMDAwMDExMzA1IDAwMDAwIG4gCjAwMDAwMTE2ODUgMDAwMDAgbiAKMDAwMDAxMTgxMyAwMDAwMCBuIAowMDAwMDExOTU4IDAwMDAwIG4gCjAwMDAwMTIwOTkgMDAwMDAgbiAKMDAwMDAxMjQwNCAwMDAwMCBuIAowMDAwMDEyNTQ0IDAwMDAwIG4gCjAwMDAwMTI4NDggMDAwMDAgbiAKMDAwMDAxMzE3MCAwMDAwMCBuIAowMDAwMDEzNjM4IDAwMDAwIG4gCjAwMDAwMTM4NDcgMDAwMDAgbiAKMDAwMDAxNDE2OSAwMDAwMCBuIAowMDAwMDE0MzM1IDAwMDAwIG4gCjAwMDAwMTQ1NzIgMDAwMDAgbiAKMDAwMDAxNDcxNiAwMDAwMCBuIAowMDAwMDE0ODcxIDAwMDAwIG4gCjAwMDAwMTQ5OTAgMDAwMDAgbiAKMDAwMDAxNTE2MiAwMDAwMCBuIAowMDAwMDE1Mzk4IDAwMDAwIG4gCjAwMDAwMTU3OTMgMDAwMDAgbiAKMDAwMDAxNjA4NCAwMDAwMCBuIAowMDAwMDE2MjM5IDAwMDAwIG4gCjAwMDAwMTY1NTEgMDAwMDAgbiAKMDAwMDAxNjY3NCAwMDAwMCBuIAowMDAwMDE2OTA3IDAwMDAwIG4gCjAwMDAwMTczMTQgMDAwMDAgbiAKMDAwMDAxNzQ1NiAwMDAwMCBuIAowMDAwMDE3ODQ5IDAwMDAwIG4gCjAwMDAwMTc5MzkgMDAwMDAgbiAKMDAwMDAxODE0NSAwMDAwMCBuIAowMDAwMDE4NTU4IDAwMDAwIG4gCjAwMDAwMTg4ODIgMDAwMDAgbiAKMDAwMDAxOTEyOSAwMDAwMCBuIAowMDAwMDE5MzE4IDAwMDAwIG4gCjAwMDAwMTk1MDcgMDAwMDAgbiAKMDAwMDAxOTY1NCAwMDAwMCBuIAowMDAwMDE5ODAyIDAwMDAwIG4gCjAwMDAwMjMyNDYgMDAwMDAgbiAKMDAwMDAyMzAyNiAwMDAwMCBuIAowMDAwMDIyNjk1IDAwMDAwIG4gCjAwMDAwMjQyOTEgMDAwMDAgbiAKMDAwMDAyMjMzMCAwMDAwMCBuIAowMDAwMDI0NzQ1IDAwMDAwIG4gCnRyYWlsZXIKPDwgL1NpemUgNjIgL1Jvb3QgMSAwIFIgL0luZm8gNjEgMCBSID4+CnN0YXJ0eHJlZgoyNDkwMgolJUVPRgo=" + "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgNjIzLjE4NTEyNSAzMTkuMTYxMzUgXSAvQ29udGVudHMgOSAwIFIgL0Fubm90cyAxMCAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0xlbmd0aCAxMiAwIFIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnic7Z1dj2S3cYbv+1f0pQxELX5/XNqxrcQ3ga1FEkDwhbBayVJWcmxZNhLkx+d9q9jTZPHMaGd2NReLFbDCTE33OTxk8eHLYpHnk1+/+vs3L1/94dNfnf/5s9Mnt99e/nDy52/x7+uzO3+Lf/84+/On+Pf1yeG3704lxItv2YeMX1/Pv0bfL774mGF2y29/Op2+On3yS1zkB3zp09Mph4vPUb5ULznFmnHl5Pol1NX6erG6eCk5i3m6wmQdNwp6o69RbDzCpeEhcFtaTqVdYssth/nOkzFd3Ljx6VeohX+c/oL/u/PHDtfK9RIybtdrDfUcwqXn88vvTr96cfrkt/7s3fnFV1JJL748fX7+yF2c+8X5j+cXvzv95sXp9ycpx8nHeIm+1OLnAszWh0rgcVPfYk+tlVjepAjhoAi9XUKqpS4luBkfLECrF+9Ty7XnlN+kAGkvQCjwmYoKnwswGR8qQEDDu5RRUPz/jQpQ9gLE0C7eoRb7XILZ+lAR0FCXXgtbK5b0JkVoB0XoEbeALy2VMFsfLELzl+4qXRZ94w2K4BdXnBu0eNyH/YjdrPGH+6/zzfdf/vjy1ZfnL16ef/jbF3/9r/MPf/rmq1+cPXyioaQf/e38+af/8r9/3J/21ltTueQYU/Xs8A0d11gP2xwXqXKHFC41ltxzdj5tBUUvrq27Imi6PvnU/H8BCxyv6m4/vPzujAt8/OtX337x7z9+9sX3P3z83Tff//jD+dd/Pv/+oPi1Emo156X4N+vDxa/o5QV9Fw3b6psVP73T4ntXL7U7l5bi36wPF9+DtL3D/XOs5c2KH95t8WO7JPAvrNU/mQ8fAJ6dijwAOlUJPmUX8ePDffYhJ/alo9OUsjrxzfoTpSgZP/Yac8hudwN3XH0Hpej9UipwZWrjZv6JcvSMlm0uON/ag8U4YPitGCG6CwZF35ZS3KwPFyIEdH1XoqOEiA+W4gDkUymKu8A1U1krYzL/RDkwuMMnMrpBCQ83ygHNp3J0f8m5V1OMO+tPlALDay2BP95fAn8xMOc1PubVfEI/5pjhs780yLIHrvLnv7/66+sv/nu50vlAl0VWTEBFFgz84fzXV+f/OH9/DuffnfFIFFb4q8+lodYyagP+r/9V/KW63FqAn/fzHz49rypzEl1LtwYje8NYkGAOl5ZLklqr/ZKba7HC7C65uBACzC1TNETcwGP0bi5y6Hx96rg3RsdAxVQvEYXPYi5gVETfh7lAG/WUyTzvMJpW1xwqLqRLK9IhaEcllBY6bgqZW1vz+BF2D6lSIIFEj6HGs89ibmg8qAg8UUD9lxD047hmLK5WPBJg2hv4I7dFu3cUshSx+xwgpmmPGc4CQdvOHiIaX+16/eTZOuziuFNxqRf5OAbPCpAkPBVGYhQykUC43CUm1r6YAXBWNe31guemgvUQMhAQrUhpoL/Q4sHjqTzAgOLLeEaq+eSq92IPtZdOc4WvxRYc74ofXfNR7A39PubSi9jZqk0qAS3VUfWND4W6jCH4Qjt7RnRFzSn4JhRHRcOvmq9B7dAGUprgUOEhFxSZlwdhYqlihzeFCEeUpw34nIiJgC/34ErSp4K4817t8CcvVQWvvrQEf5LrBzgUrhL5WB7XSb3J5+F01StfPbjMwT6IHS7lHQZ/dLBO78fQTnuiQGuwwQ7HjOCKfD7BpRzc14tdalPum+FSLkJ96mhccAG5ToZPOXSjInaIvRLZWqGkS+jNVdSbK3B8NKhcB60F8ucq5piT19vWfEkd1YzqdKgGjwvKY0FHuu5yTmLHoIHaFnu5FOqUKnZX4aRs3dDDJbScIx8LYymkWFU7HY+8FztKEQuLz7lZQuHg1xQPrWXX1I6hEkOPV1GR0UyJ5QSpMXZlDou0B/Qv8aqI/kGhS6NvKSWxcfhCLwhSNR2ulelRcDK0Q0U302tHh/4t9orJQMYcB3ZMIhqYJZ+HqCwldLogQICyoheIHe2DXlbE7PpowYiWkukPS0On6PwI7Wh+VGTKYsevoAXtGO1RAZ3kchQ+GAvEXjGiAQRAlw7Ypcrla+E8rANdMLMoTj6NhgI3EloHZofeJ50WMvKScAlXzpi/odNV8fppGtFJWVeklU6fnX5/fgTkFfCfn4mjc7gkDBXu/OVpJv756cSPHc7WDojvtV0M8fE94ZolfsBk9ID44OQR8Qs65QHxcXXBwkZ8wLXtxOcMvB4QH12s9QPiY6rY4wHx0QhHwI/JDbLPwM/V600N72MvSlIDfDiqoMgAHz7a+877CmEfd9zjU0l6puF9ZqtvvEdDgtNaYyvvOe2p0fCeYyccuVjegzEpRRmaF957uJcquQX3qCQ0vQ4PM+4duzXGZot7DrUtyqg04x5IAs9cNbSH2VNKdUt7ghlN6XfaB4wB0scX2lcRENJUhvZo7yrdeaF9wSXREnmnfSrw3brR3qUcyw57yEknEsrAnmNYSxb26Aw+FnEFA/vkgbS6wx49MIkbG9gXVHGMO+zxkFUJOMMeHb8lL2PhDfYBjZb0pgvtCTDXpYMvtIeDYBgoG+3xEXA1HtDesUks7dH4Cb6Vd9pDJozLrLR3HPfDSntwurLz7LBH98ZzbbCHN2URGzPsCZiQ9SIL7FMq6nwr7D0EkbTqY2F/U/SeUIe3RZQrV+De5QRX7AXofAjq89TnxnRa4Un09ZnpNMNzaq4L0wM5nmtZkU4rilCkE96QTjMEQpGan5AeGjFbYk0r0mkvFLZhQTrNKWB0N0inHX6mimhCemiN82ZowxXptBeHIbuvTKc9opOktjCdZtRxFH+aoC5zwJQBkRXqtKP9ai0r1GkHeXo2Kp7dGpdUATVhnXaMDJiZrlhHV8dgAg0VVqwHaR3McsKK9dAAJVxe9PcN66g5lCCN296wDqkL5PQWDNah0y/kXzcynoHejgdU0N24jm+hnVHmsnI9oIs1dv64cj2gj+Xqhk69gZ3lgW+oNpzAHvjkQGisK9hp7+iS3YCdVA0JpW0r2GlH3YRSVrCLXUTOCnaxR3bqBexy+ciJ7Up22lEslQQT2aWYGeALK9lpxwww6jB5Izvt6LMtrmCXWughO6PiafeYfKeV66xM6Okk5Jm4TnsEBxTVg+uh4jaQzQrMG9cZgqnodJbr+A48Z0wcbljnZdDOsRqsy+VD1ZH8hnWagRAv06cJ6/rxO3F/h3XaWXci3Cas0475vrJo4jrteJjc+gp22j1B11ay0y+7V104kZ1mVIdKtwnttKc2ZMu7EfJnf5pBf34s6KH0j0gf0xqvUdJDo6ad9EUCIRb0gJbfQR/RREa7C+jp630HfcVMS9G6gh6jgjSdBX1NOgNYOY8pile5bDhPOVsOON9KXaU7rWgirxODFfOtpDEDWDGPUSRb7U47xpa0UR4dAm6hH18pD9aOQs6UBw5LEfmxQB6VzTrNFvLQlXDwZiHPGcN1qJsgDztEqMarZsjDDnR0adcZ8rC7kJN0jhnyGFsq5pLRiHfas0fpLeQ5FjHeVgzkYXeudellC+QxucNIp3p5hjwqFj0uVAt56lZ8vFvIo4PC0WS6tkA+SDtrrGmGPAZHB3sykAePMyauyUI+4PIYSk2shj/WDBlZLeS9BtODhTx6Zu5OYqML5T0DEhoFNZSvBQIqGMxzsEDzyZxqxnwj2YG+OGMeRtwkSZvMmAcaaqtlyPQJ853CIe6cxxjifKnVch7lAoV0uJg4D3Xm4Zzdcp5TaLjmxnl4I6anGlOaOQ95Brio3F85j0tqhNhwvnBtvlrOV0ZgvI3XyLiQgvYsA3q0chTd8HQRj2EafU9xDswX+BamTPCS5S9PCssn9HHoZZmqTEEatEACNkXlTkGaLDEymfBNMRo8UXH4b+W8z+gpGOX6inlMxRgwhvesmCcdIQuGIr6FaNAPUdCyBeUzOVIx7105Dz2DltsCNMXD0xy/uEZoCoqe6lD/twgNkQx91dKKebQ7qqVlmcfPIRp4GkqljzpFaNie6Hcaqp9CNIVeEYK3MZpCr+teYmBzjKYwuFy7TiKmGA3s9N5sY/K4ZPSgmonJw5xjjDYkDzPXLn1dMc/SgLxJte0UoymMABUVO3OMBqXhSkCIK+ZxD7RlGBp8itFUxpBBWxukwYNDNZRkQ/JAaWXUwgZpKKay0746B2nQJ+ES6lBzkIZ9uwBTYcU8fPzCQafWFfO01xq6zhVuQRohmRtThSlKQ/WMbuVtlIbthnroK+VpbnjYZoM0pHxLXUeRKUgjowXxslLeY3TBhCxLK85BGtgh10I0lKe9j6DiXYwGtgbB6GyMRmZdWaXWHKORgREF6CvkPQZqLovFlfH0UA81WEyIhjKDs5y4Mt5TrQCiVsvTDh54WSKZA/IUSbLwuiCeSU5cMqxGytNeMnPNVsR7nclXHaFuiKc9oa+ElfA01zZWMd5dTP4G9bfAfUKfazvuufy2xm8E90Undob2gEjacY/+EpMJyRP3sWvo1vIeNaii0/C+J9fzznt0X98OeJ9SV7vhPTSkRtNX4mOoSt3G5AsBh+7vN+KXNlZ/DPHhazoDN8THbEvXrQ3yY+awZ5FfGXcJopkN8tHHm9bOivyKvqSLATPy0Q86HsCG5SujZzmtyp5WxqR0TXhCfsVwCCQojCbkA9UB7DXCnmZYdeSYiQ/HYo6FFfZ8jgCtKKptIX66MCyqUaOZ+KjMABZtxC8U/Lp0bYif8VOwYXlVYSHZRVgSv4cRfjfEj6gXI+yF+MVryHElPurPeSPsaa+QouWA+CB60gFoRX69oX1FfgFrjpDPEa7syEdr+HJA/Mp5myU+KgSOo4uKd8hHE6J7Bot8zrV8cFLGBflAO8Dija6nnV/NYWc+4zFlQz7IMgarFfnQLV3DLivysx9SwSAfPlGcCd8I8zuF9wHzW/LiCJb5JbZ+xHwQVZeiV+iDnMG9XWzecb1PV1/jSXJGevKe8XL+ImuyqOmnZdswet1WyMNWO+qwr5SHWb5VV8pHZny3aiAPKzPdNLo+QT5SWqZkl11hxvQ4OLPsGtml8HMwjE+6+CLeMjM+OQmbJptok7iIMwKYM+MTk4p6GcH4O8bDDEb3lA3jE5Mi4a0meMNvYr7uuonR6xXz+PzEeNjRp6qugU6Mhz1CXnvLeNgToOQN4mmmIDQherGjSfTzN8bzrsmrnJ0Zz6cC3eQyM+NR+d3HOEL3N8jDDzBeBst4KIaOAdZZxsMOid4UhhPjYU/oqi4axsMeXb0m4NwYnxhM6i6ZCL18PqAbNsN42jETElebGc/7thot4pOIy7bl2cDOJfhmRD3MjQv2Ns+GtVBB9WYQDy/COKSYnBEPe4DPVavqE+VBqyUYxMPOxXZv82yYS11HGGJCPMyo7KzR8gnx/DjKWebQjZTlGmabEQ9Ks/uqHJ8QnzjfKaFZVS8xgRicCd2IHR/QGM2N8fgpwwmbzbNhIiX8tFvG87Ypa8R1ZjzsqKXgTOgG+gK9s2n3mRmfGP8FxaJhfGIyBpzLMh72RNSaGD3tBX72pPXXe4X9DfjntwA+HB6CdAN+0LnuinyQMgvBZuSz6gBMI+wjF/ViaSaOE7nInYJNriTye0zOrMsK84EFAcDKfCK221SbxEeHsLepNolAHG5imM/lVBFbhvlM4cgmkkMKdp8lULgwH324ApttZz44GdoB89HebbB9YT56bdf5wcp8lH0E/lfm46HGusIMfbpWH+uvM/SDrO/GZKDPbIqaduijW/bcxfln6MPeqrbJzPwEd8d1NmEPe0Dv0GXWGfpRBlwJJS/QZ7ws1E3YJ0bmuw7cC/Rxq4h+bEM5KVH/1WCzK2EPlHlW2MPOUICGzmfqA4lw72SWZWnHjUZW50T9xERenega6mM+mpsV9hyDYtC43kL9LCUWubhQH2Nlbc1t1M/MkCvdCvvE7LYxxhnsY+Jfk1mYlVGFs9clmMOxAPgdKZcT9tEJvPaThfqFSTtOZxMz9fFjhuCzwj5xwbZoWGmCfsXojNYvFvrkwxXKM/Qre4YvNpaTuL7b4hbMwZ1QGbpwukCfiVpDkC/QpzzWBfGF+RibGmbR3TK/cSUpSwjzbXR9HuuwpXNV1l2hz5xKAX7CGP1UXc9lEkkgmDmP6oqhmlVZmnExadIZ89wg1HWRccY8M5V7sOEbmnPNG+X56agzr5nyTIwDYC3lo6zLazx9gjzNmCEHw3g+DsYyca6Z8Xz61rqN3USZxqtUnBkvdTiSkWfGc6xEPQebUMmZUIB72wx6jouQnN7k3shIV0duzIx4NnkdkadV12OEznqZFfGZyjsYxKOauNi5IZ5djJc0iMcDokuNQPIcrmduKju/YbyngO9W1gfMVdBHlJAT4dFoGJ10U99M+MC4FhzBhm4Cl9XLlj4fmB3tNA93BjyumIJ3lu8w9562SD2xleBNNlIPOzO5NL3mhvcYuAwTvRX1sCcmpdvk+UjKeW/WYyWfGVOhZJJuuN0XfxthoYnu3Abc0siAmegeGWq8LtPe4M49ot2rup7YDjMEoubb3rE9jiijt2xn0m5IzQbq2RrVj6XeCe5R4oN9gzu+Wpn0nle6R2FhMYuxWo9VZ/kz3FmP3JxnozawYwzzxSp63SKkk68Z7rDDCUqyih4ViRlAdZbutHNHnqU7GwrEdO8u6+Y0o/78Nqjv3Fy/ob7FUmwUR3hVpKsY1BN2VtKT3owdbqwvbLuyw77AKTQws9Ievq5TyJX26IYaHjO0T5g4qehecZ8wW9bg9cp7tJaLNo5DO8S1Rpsm3lfGYVXFLbyv3HoXNc4y875yXqM56AvvuZMqaM7Zwvsqd4o2Vk970IWkmffsT73vq7O0oxNb3NOcQS2j6GmOI6Y94552MLXa1VkgoGNis4dxmFEZNSV5xj3tTHSzkp52PJ/JwREzkFtMDo7Yve8K8In3+LGNbMob7Wls0BQ2Tk97vW5ymnHPFbysHXfhfZFdHVv6PO3oX9EEcWiO3W3582L3urK38J7ZVaMmZ94XZjZqNHLhPe0pZJs+T7u7LhzOvJctXV1mFwvwaUf5bPq82J3vS5weRqA8RBvEEXtp1QZx1K6J2gvxac9NE15m4svng04tJuLTXL0OHDPypThZA1Mz8qXsuZr8G7VHdbMF+bQX10wC/ajL3E2epdZ91ND2gnza4XQ2UC9NG91bJtGD8iOXsrYTO7guwoYzF3gG5Z8cpwdKNPffQN4P11ghD7zpgtIKeRH/FvIkBJrLJuBEBg9b0qXOGfKs/qR5azPkszSFJhnOkGeAtrQd8iBj27dIwYzH8JukZz/Juj9jRnyQblg3xHvmmWq8dUE8V4GTrm3MiA/cdteD5rxMiA+cd/axjjEhPnCxOmjsc2Y8D8YJ7rr7ddolxSChD5um5y5atqvR9FLbGCr8Cnk0GoY5p3GDG+Mrh8tcq9kkxcBk1O3nc5YlmY52zyaVHl7LqfGIqUyE56piiM6m0nOxl/thncmy5Mo2oDOyNSfIc0H9LqQ9QT5zy0zQHQgz5DOfCp3eQj7TKcbOhBnyOTEfw2vM6Qb5zNuWYlPpuVkejqDJJzPks2Oml99CNp21rVOAOWLDbb5pLJLMERu4FuYpIzKzRGzAA01+WCI2mYJKty8vERvMAXz1I2v+yvjO8I7uApgZz8OX8KO3W6RQw/Dz7q2qR2VnltEbxmdurgMFTP4NqgA+lLtlPAPsqNRuZT1jKpjXNLshlrEZtL2OCXPMhjnQGCy2mA23QAfdzrbEbOREnu63oA0DV0kXKpegDddOoHLf6a7YG/DPTwe+477kDfghBV1pXgP1wITmAK9rs+gX0STWi5nHaBUDfB55FA+ArzMJ3SM0A7+Jy8gscgY+zGnsv16Az8SosQ115j3MHv1/E/V0hzTGh1XUd852wibqe22aRGFEPXcF5C2IA3sOurBnRD00m2YnGVHfufi7a/rOxVyTWS92F8fREauoB6lV5BlV39Boblf1ULR15OUsqr7hI80QX6dxAKUN4kj8rGpC6qLqufsmqScsqh52N7bZLLJe4nOlWejTPjZNLKqeUT6n+xQWYc9dbWUUZxb2VVNAkxX2TCWV88CMsK/MA9G03EXYy3adEZ2ahD2nrXQAK+yZygcJvwVyKteoqy4bzMq+crFM94ouyp7T37FHZFH2lYvIzmbWix1ap9oMHNpLcMWegiAwysGvyh5GFDqYDVRiR2/tNlAvk+6oJ1wsyr5yCTl5uzGW9lx1wWxW9tyACE/elH3l/sk8dlZNyp7DttdA8KLsmREfdmEPc4mp2AycKBtfumW+SNjk7QYqsWMk27IuJQQQdYHnrRJwrpRP23E3YpXo1ROFPZ6y+X1BNpax/LdyPqJSmznuhoNFL1ECVivnoehi3pJwOIiE68aqhfNMnso2Vs+1BOe2FVkhrldlZYP1uXV3EK2Hlg4a819Bn0H6soM+cZO8za1nk3JHrF2RpYvzjIwtWk85wDq2oGdstPQt0xIl6/TNZEmPeQzKUa20j9yd1IvZQyVRXZ6bZs4/4MQE9Co2fBNIBYblDehRr4UDezeg9xxN3VjAnUAvqjmNFMkJ9PR6CIdkz7tBR8fTdm/jN1zmA7DyQRoOR1NvSZ9QCxTfWxpO5IkGmsK1rMiieqobQfJ5RZYxXG7BMKTn4gcq2ZvzbhITUZvu71xWZMOF2+m2VEtZbs96dMEi7z03yI0tWrO+5/5c6elG38spAila0jO7oMduT0BgkkJPXXNHZtBz7oN6qgvo0W15GJWV95GPwZUFA3qmKKFYUsZlRRbF6ilGK+9l7R/TJZNryarkSUObvOd2tDE1XuQ9F1Eg6DZ57xkzvubbTPKeVTw8fJH3fJIe7VZZqXq2TrHyHnY/BuVF3jMjI/n+FNTfn4dzx/3t0JtHcB8PgY9t3C9tD+jADMdrNmrPzU1Rl45W7kNoF5FRK/fhN7puYriPmtP1LcN9Tt+qybAXM1zCZl/KaMPljF3gM0NvC+jQDGIfLNKix9ZuDr2hGVQea7fLIm1g9pU99YZ2oEwxvi7S8hyvYiM6Yo8jd3TGPheHeYSVxT7tbpzjMGOfu4C4wGq533jISuwmoiNm17w990Y6O4SUtwKfYzSXZKzAp921ZDNxaMeMQNMgZ4HPwGEdE4VZ4DeJFajSngV+4/E/GhyaBT4nmEWX8ReBD3vqI4tzFvi0h3EgwSzweVhJTsEefCPSowUd/maBT/s1lX4S+DBzx5y3Ap8z2zJ27M4Cvwk687ZUS7vX3L1F4MtMuOvoNwt8ppUUVVSLwOcMmVEvK/Bpd92ekKCS6pqrOHFfTvPJlvucT2MatYXum5xm2G2Kvdi9LsEvAp+SYeyemAW+hGOC3VUl0+868nxWfd8xNh3Ie+48cpb6Ml3fFmqpHOPYZbuqeznl1+/qHqJAMx+Muu+UguEt1f10HsKnp6dIeM480p5Gn9ATt1wbmku2m6VojlGPmlxRjkrw9QDlcJUWDkI1qbRc9lBNamOHvkF5duMQmZXkGb2r2L1SUQ4kG/tIV5QXzyOeNpQz8FrtXiluMAhQc9v6qxzmWYPNqWS+DU/FsttjJT01j6da822gS6qz22MlQRUzYrtXCvYCX99WYJlyyjPlbE4lW835bX8sBRGm59lKeCY9QirYYxAkGw/qom+xGrn+SLCfSE7ZNnZ6LSTnN8M4KXMmOXFTgy6GzijnAW8p7ouwxGjWJY0F5VzqaLoSuKAchBpp+usSLE9pdRvIpfP1ZEFe5Bw3TSxdl2B5nGe2+l3WnqK3ZyCovYzjP9c1WNSNJpebNVjPY8NsfJ7Fx2eSjc9zUgimhm0NNnOP40iwvwN5YtuPQ2dmkDteZGTpzyDn2kJQvzcgh3vkfQ2W0bDW8kGkpvpxRs1KcpKl2ER6mUhfhfeKcvhz1XFiRTlXsJLdIMsSw/EPYI6mGafErTDH7EaX4MwSbIfuE+n7zvT7TPafCs6wyXayp7YlUZK9TU+5NmAvUGB+BzuPgtw1OmY93R/EZtCIV+2+gh2NexCDp9lvsRmxu3ag0RPYlQ/IjnGjaWrkSnaUPuZdpKeSdZuLzaQscd8FK3avkaIV7KjJscy5avQEuO1BeBn1NJHLaPSUnU5FjUZPqR5qdJ7M1jaJnpifZhZddWhuqWyZNbRnf7RBiogaGTSLROdGqL6BnXZUj90FK3Y3FnBXic5ilgONjo6nR68YjQ63LHsuZZNlYz3ecdXo0HEtm+NtNFRZ27YLVuyoIBuEZ/fqVatt1eg8cG4PwtOOycQWhOc7Bniuwq7R0ZncFprRmXXtWzol7WmcTLNqdIZgil16lal4ruvplGIc58EZjR55QmfcNXpMugHAkD3yfLe+S3QevKHZO4tEZ7Kt22Lw44xBG5qRif6Y+y5kpz2HsgXhmzhR3MjOCEBWhbKgnXY/Dnib0S5xaD2RY0E77V7n1m+j0+t1ffW0ZE0ycfn631OD8AmwFeljgjFA1VEwpnrdvmmCMezHNruGdVXidua8xjPGuuQK+uC9S+txlWOiPU78Mout3MVmjjHT6RtkW7Ggl0z62s0xZmNhL7T1uErNJIpD665BeDxpscdViqZAeas97kCC89ltGZTSzduu4IscamI3RVGK5rF0tXA+c4ase0MXznNzeh9H2k+gD1S6Y1CbQc9txUynMqBHP+88FmA7cx6sy0n3bi0xeB7n45yzsZjMiCbKaUGfxM+CDcXIxpzreLGG4OFoPRyF4DkI2liMhODj2Hu6huB5YFIwZ1XKZi/ZVGM4z71h3FRjJDwj87XqAogJwUee27NthQ3cMzb2Gcwh+ICPjCO5TQiep6pvafOcbmFUVmjNIXh/uTt5aw7BM1Xdj7Mt5wwbhqtjdsuJ8zRi5lTsWitjzMHrSbVLCN5zTlXtKWYSq2aVWc5LDDvpmbRzCJ5nKbbWrILXHSFpy6LUkPdQ5GsIPsTRyU0IHmwpuiS8huBRwbqvzYTg0TG06k0InukmfcuwgZ0Jte80cb5OSTVPhj78FRTdI/BOD0W0Efis2+QN9HmCgD39QNZpfT2IwPMA7m2TlPT0ka5o1L1rxR+o+0AtdqDuk9PUOKvuR4qK0fY1apKE1fY8X3nfJYVe4g7i7xkktW8ZoRlq19Vd2oM+9Sj8zmBIPpD2+ZrTZqQ9Jg7j/SCrtGeKa9my5rmfiE+1aftSRla70faFG/kPwu/MYTyQ9nwrll10pRn9MthFV9r5Kopd2GNC2NtB7L22MoT3Kuybs6dWihVFDltuDVMSS91za5qkEnW74kp7QfVtm6S4nz6ruFxlPYNx3u6BpZ2HTm1J841bDg9D750ZvW2X9X1M/YyqRw9WYK6injsqsn2/CEODrqvqMguu6MTjbIIpn9LFpmvgi6jnWZMjjcjEa/hyDd1PNKt6Oc7d103VM0ES3mr2wDJMyY0czar6zrODfdziNZ3b05pGzWdVzxPL/ThCc1b1XQalbmlPe+XLY6yqZ1op+Jqtqu9covJbPqUcA8CQ5Fuqejfn1owjzLh+xqO9lfb5ia+S0g1TB7I+Ba/7MW1gPgXpfSZ+E0bikonf8J0d5hR6tfe6vUpKQxF60LchfK4j3GMIz90aB5F5+GN1B0mUqfeSDhifAQlnZT2pnaM97EDgXHR3tN0IC9l5EJeHi4+5xMr4yh0C5nRi5RhUkt8Z330I9gx67WeujQ1TE+P51srsbdI8w/jo/N0eYpbkpSuD2nNc3jNHZIB1jssHxnXc9m6RyNMKRwbKDHkeStbS9iYphpJT9HYjLMzyUo0N8oUdN8YthVJ2/4yEnnVvFPrNfmol7SXpu39MCiXPXh0H2SwplM6HTdXLx6/vwVoD8+jxsW3RG+4DG4rWbo5KKbotelMknz5uK6wy6WnhYHMUJLAu85vAPOcYbgN94nFEI5n8DvR8+UwY64sT6ANPvSjjRSSzrE9MACn7WQdejooMW2YNX/t6ffPUAnq0bG7bEqsA+rr0uoRveuLbuizoqQ/iOJlmDd+Uct0PsIZvck1j9rGGb7K8TcqCfgRAt8g8VavXZMx3JuvdnFnzZOqj47U9cz7FpOd1GurHpA9tqB+jnvVll2ODurOl/jjoy0A/jGPkLPTRp7J5f6CONNWZE+nVHsbBuwb6PLPVHms2AsHVvHpE7aMvmqA9btft+wM1PjzyO03QHn0+bbEc2jHr2pZjZSeDnh9usI8RcZzEs2KfJ3T5A2kfOR6kXdozIazv0p7b5+NB2J59ZT/XTN5Ze5BXAydWUWCkfeT5oAd5NZEHMR0E7fGkodljzcTu+545z+lmG6PKqu4xDR1qfVX3MR/kU0r0sflmT7gR+34AAq1e06hNyJ7n0m2rsbQnPWvVhuyjy9v5NhKXLn2E5teQfeC567u4Z+pD2vLmaS9jt6YJ2fME+y1vnrHWVtuaNy9B7LHD1YTsnddELROyD1y22HbE0h51scrE7ANZtsfs+ZLNLZ1S7EwA2aEfKt/wvkOf7zWxbx5RO+cJO/QDCm9fIKh29LBN3TN/brxazMbsc25zLIei3Z2/Pcvrbw2YDwaE72Yj3w1GPOnVUDw2jvn4bF0/f3j1o4vYT99d5qGrf/LLeP76Bzwa5iTnr/FPMv7Pn/K30yllBiCznmLCyamewFAICWt+DTPTxBsT625mGu8+2+XlbOj7s5WpAfLRl6fJTJ+fL3w18yWlPfFgyel2tF5vF+ePXi88PcjN/BpmOpUcDHkzJ2722+42W++KhgvfzLcHeb2Yb0893e5WQYd1/PL0J743+ZNfBraOzBjhfPsLiN/0dZQnuCkmPbcn8LIoLb5RDsx4gnpohss46QrDV+Ap+Hl+uTNIfP0iOTeeR17LLPnwsejL1Xleqfjtiy+n9zV/5H9xfvHtiYd1MfVUziqXNzh/9H/yhygxx3R76/pHTuzH71u/3mJ/7fqP338T6m+avnhdvgm9EaEJGGvVK9wMnVF+pkryWvIa9U9+Gz7+7MW//udn3/zvv33/6rP/+e4Pr77mNWVb2u2aU2kwfvaeIe/Wh7+vZP36Svh7XmX0xk5gcvomJ+C7XA6c4GZenGA2ixOoA3x+Lc/DjlD7czkCX1Zc7i4tf/in8QXPBXwn7wvXP5zv+8NX4w85YPTEmHp3j2/kDxBUlNAu3v7wt/fbC+97WeJPvENr9jaeBn/gbXfm1dsm8+OQU/zP72n+/W7s+96e9tSWT/Ww5e/Ma8tP5sdzhuu9z9P6Hzjz83LmqS/4mB0v9EPHuzOvjjeZH4cc5kj83E4X3u92v1/lvJkTPKBy/KHUvZlXJ/D+LejjnkHuhg/0eRb6PO0U8snxfD+U1zfz4niz+VH08e0ZpHV8v9v9Xvq8oRPcTx95bc+BE9RD1TubH00fvrDomRzhA31+bvo87cTU2fHyoei+mVfHy/WJ9MnPILjT+93u99LnDZ3gAfrEQwF8M69OEPtb0Cc+gwhOH+jzPPR5ysFumceX7OHlnA/Mr0+5HJp/Gj6Z7+t7xvByfr+b/X74PNYHTqsPzNHlyQfmMPLkA4+PLs9+8BzR5fyBPc8z73rSqTOz402B5tnxpojy7HiPCjTPTvccgebyfrf7/fOuN3OC0/1OMMWcZyeYgsuzEzw65jw7wnPEnMsH+jwLfR7YMz971xRYnr1riiDP3vWowPLsWc8RWK7vd+Pei5g3bGl/qGTnMPHc0o+OHs+t/RzR4/qBI8/CkSdt3Jv8bg4eT343R4knv3tc8HjyuWcJHrf3u9nvJcyjfcDMoObY8ewD9VDIPj52PPvBc8SO2wf2PAt7nra7YHa8fCie5yDx7HiPih3PTvccseP+frf7vfB5Qye4fwY1x45nJ4iHGvfxsePZEZ4jdtw/0Odn88Lfn/4fGmHUsgplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjEwMzc0CmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9MZW5ndGggMjQ3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RSW7EMAy7+xX8wACWrMV5T4pBD+3/ryUdFO3BECNLXOLuxEQWXrZQ10KH48NGXgmbge+D1pz4GrHiP9pGpJU/VFsgEzFRJHRRNxr3SDe8CtF+pIJXqvdY8xF3K81bOnaxv/fBtOaRKqtCPOTYHNlIWtdE0fE9tN5zQ3TKIIE+NyEHRGmOXoWkv/bDdW00u7U2syeqg0emhPJJsxqa0ylmyGyox20qVjIKN6qMivtURloP8jbOMoCT44QyWk92rCai/NQnl5AXE3HCLjs7FmITCxuHtB+VPrH8fOvN+JtpraWQcUEiNMWl32e8x+d4/wCVT1wmCmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0xlbmd0aCA3OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNzVSMFCwtAASZqYmCuZGlgophlxAPoiVy2VoaQ5m5YBZJsYGQJapqSkSCyIL0wthweRgtLGJOdQEBAskB7Y2B2ZbDlcGVxoA1pQcDAplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9MZW5ndGggMzA3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjAgMCBvYmoKPDwgL0xlbmd0aCA1NiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNjZXMFAwNDJX0DUyNlUwMjRQMDczUUgx5IIxc8EssGwOF1whhAmSz4GrzOHK4EoDAGs6D4cKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvTGVuZ3RoIDczIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDO2NFAwULAwU9A1NDZUMLI0VjA3M1BIMeQCCoFYuVwwsRwwy8wSxDI0N0Ni6ZoZQmWRWCDjcrhgBufAzMvhyuBKAwAeiRaVCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCA2OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwztjRQMFCwNFfQNTQ2VDA2MFEwNzNQSDHkgjFzwSywbA4XTB2EZQZiGBmaILHMgMaBJeEMkBk5cNNyuDK40gD6qRZFCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0xlbmd0aCAyMzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNVFJbsQwDLv7FfzAANbuvCfFoIf2/9dSyhQIQCW2uCViYyMCLzH4OYjc+JI1oyZ+Z3JX/CxPhUfCreBJFIGX4V52gssbxmU/DjMfvJdWzqTGkwzIRTY9PBEy2CUQOjC7BnXYZtqJviHhsyNSzUaW09cS9NIqBMpTtt/pghJtq/pz+6wLbfvaE052e+pJ5ROI55aswGXjFZPFWAY9UblLMX2Q6myhJ6G8KJ+DbD5qiESXKGfgicHBKNAO7LntZ+JVIWhd3adtY6hGSsfTvw1NTZII+UQJZ7Y07hb+f8+9vtf7D04hVBEKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvTGVuZ3RoIDY4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwUDA3V9A1NDRVMDIyUDA0MlFIMeQyNDQHM3O5YII5YJaJAZBhCCTBGnK4YFpzwDogslCtOVwZXGkAcaISZwplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9MZW5ndGggMjMxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVPOZIEIQzLeYU+MFUY20C/p6e2Ntj5f7qSmU6Q8CHJ0xMdmXiZIyOwZsfbWmQgZuBTTMW/9rQPE6r34B4ilIsLYYaRcNas426ejhf/dpXPWAfvNviKWV4Q2MJM1lcWZy7bBWNpnMQ5yW6MXROxjXWtp1NYRzChDIR0tsOUIHNUpPTJjjLm6DiRJ56L7/bbLHY5fg7rCzaNIRXn+Cp6gjaDoux57wIackH/Xd34HkW76CUgGwkW1lFi7pzlhF+9dnQetSgSc0KaQS4TIc3pKqYQmlCss6OgUlFwqT6n6Kyff+VfXC0KZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UDuORCEM6zmFL/Ak8iNwHkarLWbv364DmilQTH62MyTQEYFHDDGUr+MlraCugb+LQvFu4uuDwiCrQ1IgznoPiHTspjaREzodnDM/YTdjjsBFMQac6XSmPQcmOfvCCoRzG2XsVkgniaoijuozjimeKnufeBYs7cg2WyeSPeQg4VJSicmln5TKP23KlAo6ZtEELBK54GQTTTjLu0lSjBmUMuoepnYifaw8yKM66GRNzqwjmdnTT9uZ+Bxwt1/aZE6Vx3QezPictM6DORW69+OJNgdNjdro7PcTaSovUrsdWp1+dRKV3RjnGBKXZ38Z32T/+Qf+h1oiCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0xlbmd0aCAzOTUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPVJLbsVACNvnFFyg0vCbz3lSVd28+29rQ1KpKryJMcYwfcqQueVLXRJxhcm3Xq5bPKZ8LltamXmIu4uNJT623JfuIbZddC6xOB1H8gsynSpEqM2q0aH4QpaFB5BO8KELwn05/uMvgMHXsA244T0yQbAk5ilCxm5RGZoSQRFh55EVqKRQn1nC31Hu6/cyBWpvjKULYxz0CbQFQm1IxALqQABE7JRUrZCOZyQTvxXdZ2IcYOfRsgGuGVRElnvsx4ipzqiMvETEPk9N+iiWTC1Wxm5TGV/8lIzUfHQFKqk08pTy0FWz0AtYiXkS9jn8SPjn1mwhhjpu1vKJ5R8zxTISzmBLOWChl+NH4NtZdRGuHbm4znSBH5XWcEy0637I9U/+dNtazXW8cgiiQOVNQfC7Dq5GscTEMj6djSl6oiywGpq8RjPBYRAR1vfDyAMa/XK8EDSnayK0WCKbtWJEjYpscz29BNZM78U51sMTwmzvndahsjMzKiGC2rqGautAdrO+83C2nz8z6KJtCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0xlbmd0aCAxMzYgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTY9BDgMxCAPveYWfQCBAeM9WVQ/b/19L2HbTCx7JgGxRBoElh3iHG+HR2w/fRTYVZ+OcX1IpYiGYT3CfMFMcjSl38mOPgHGUaiynaHheS85NwxctdxMtpa2XkxlvuO6X90eVbZENRc8tC0LXbJL5MoEHfBiYR3XjaaXH3fZsr/b8AM5sNEkKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvTGVuZ3RoIDI0OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUmKAzAMu+cV+kAhXpO8p0OZQ+f/18oOhTkECa+Sk5aYWAsPMYQfLD34kSFzN/0bfqLZu1l6ksnZ/5jnIlNR+FKoLmJCXYgbz6ER8D2haxJZsb3xOSyjmXO+Bx+FuAQzoQFjfUkyuajmlSETTgx1HA5apMK4a2LD4lrRPI3cbvtGZmUmhA2PZELcGICIIOsCshgslDY2EzJZzgPtDckNWmDXqRtRi4IrlNYJdKJWxKrM4LPm1nY3Qy3y4Kh98fpoVpdghdFL9Vh4X4U+mKmZdu6SQnrhTTsizB4KpDI7LSu1e8TqboH6P8tS8P3J9/gdrw/N/FycCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0xlbmd0aCA5NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFjcERwCAIBP9UQQkKCtpPJpOH9v+NEDJ8YOcO7oQFC7Z5Rh8FlSZeFVgHSmPcUI9AveFyLcncBQ9wJ3/a0FScltN3aZFJVSncpBJ5/w5nJpCoedFjnfcLY/sjPAplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9MZW5ndGggMTY0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWQx3EFMQxD76oCJTCACvWsx/MP6/6vhvTTQXoYQgxiT8KwXFdxYXTDj7ctMw1/RxnuxvoyY7zVWCAn6AMMkYmr0aT6dsUZqvTk1WKuo6JcLzoiEsyS46tAI3w6sseTtrYz/XReH+wh7xP/KirnbmEBLqruQPlSH/HUj9lR6pqhjyorax5q2leEXRFK2z4upzJO3b0DWuG9las92u8/HnY68gplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9MZW5ndGggNzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIZ4CYIG0QxSAWRLGZiRlEHZwBkcvgSgMAJdsWyQplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9MZW5ndGggODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPcw5EoAwCAXQnlP8I4TIIvdxHIt4/1Yw0QYeq3qgITiDusGt4WDKunQT71Pj1cacEgmoeEpNlroLetS0vtS+aOC76+ZL1Yk/zc8XnQ+7HRndCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0xlbmd0aCA0NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0xlbmd0aCAzOQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZDO40gAV8wp8CmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0xlbmd0aCAxNjMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvTGVuZ3RoIDMyMiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UbttxTAM7DUFFzAgfiXN4yBIkbd/mzvaqUjTvB9VXjKlXC51ySpZYfKlQ3WKpnyeZqb8DvWQ45ge2SG6U9aWexgWlol5Sh2xmiz3cAs2vgCaEnML8fcI8CuAUcBEoG7x9w+6WRJAGhT8FOiaq5ZYYgINi4Wt2RXiVt0pWLir+HYkuQcJcjFZ6FMORYopt8B8GSzZkVqc63JZCv9ufQIaYYU47LOLROB5wANMJP5kgGzPPlvs6upFNnaGOOnQgIuAm80kAUFTOKs+uGH7arvm55koJzg51q+iMb4NTuZLUt5XucfPoEHe+DM8Z3eOUA6aUAj03QIgh93ARoQ+tc/ALgO2Sbt3Y0r5nGQpvgQ2CvaoUx3K8GLszFZv2PzH6MpmUWyQlfXR6Q7K3KATYh5vZKFbsrb7Nw+zff8BXxl7ZAplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9MZW5ndGggMjE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QuY0EMQzLXYUaWMB67alnFotLpv/0SPn2ItEWRVIqNZmSKS91lCVZU946fJbEDnmG5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+uco+fXosbPsPxQxSRkg7mNf9Y/fJzDa9TjyeRbm++4l6cqQ4DERySmrwjXVixLhIRaTVBTc/AWi2Au7de/hu0I7oMQPaJxHGaUo6hv2twpc8v5SdT2AplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9MZW5ndGggODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0xlbmd0aCAyMzkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVDJbQQxDPu7CjUwwOgcux4Hizyy/X9DygmSl2hL4qHylFuWymX3IzlvybrlQ4dOlWnybtDNr7H+owwCdv9QVBCtJbFKzFzSbrE0SS/ZwziNl2u1juepe4RZo3jw49jTKYHpPTLBZrO9OTCrPc4OkE64xq/q0zuVJAOJupDzQqUK6x7UJaKPK9uYUp1OLeUYl5/oe3yOAD3F3o3c0cfLF4xGtS2o0WqVOA8wE1PRlXGrkYGUEwZDZ0dXNAulyMp6QjXCjTmhmb3DcGADy7OEpKWtUrwPZQHoAl3aOuM0SoKOAMLfKIz1+gaq/F43CmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0xlbmd0aCA1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHK4MrDQDhtA2YCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0xlbmd0aCAxNjAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZA5EgMxCARzvYInSFyC96zLtcH6/6kH1kei6QI0HLoWTcp6FGg+6bFGobrQa+gsSpJEwRaSHVCnY4g7KEhMSGOSSLYegyOaWLNdmJlUKrNS4bRpxcK/2VrVyESNcI38iekGVPxP6lyU8E2Dr5Ix+hhUvDuDjEn4XkXcWjHt/kQwsRn2CW9FJgWEibGp2b7PYIbM9wrXOMfzDUyCN+sKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvTGVuZ3RoIDMzNCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtUktyxSAM23MKXaAz+AfkPOl0uni9/7aSk0VGDmD0MeWGiUp8WSC3o9bEt43MQIXhr6vMhc9I28g6iMuQi7iSLYV7RCzkMcQ8xILvq/EeHvmszMmzB8Yv2XcPK/bUhGUh48UZ2mEVx2EV5FiwdSGqe3hTpMOpJNjji/8+xXMtBC18RtCAX+Sfr47g+ZIWafeYbdOuerBMO6qksBxsT3NeJl9aZ7k6Hs8Hyfau2BFSuwIUhbkzznPhKNNWRrQWdjZIalxsb479WErQhW5cRoojkJ+pIjygpMnMJgrij5wecioDYeqarnRyG1Vxp57MNZuLtzNJZuu+SLGZwnldOLP+DFNmtXknz3Ki1KkI77FnS9DQOa6evZZZaHSbE7ykhM/GTk9Ovlcz6yE5FQmpYlpXwWkUmWIJ2xJfU1FTmnoZ/vvy7vE7fv4BLHN8cwplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9MZW5ndGggNzAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzM2UzBQsDACEqamhgrmRpYKKYZcQD6IlcsFE8sBs8wszIEsIwuQlhwuQwtjMG1ibKRgZmIGZFkgMSC6MrjSAJiaEwMKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDMyMCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UktuBTEI288puECl8E/O86qqi777b2sTvRVMMGDjKS9Z0ku+1CXbpcPkWx/3JbFC3o/tmsxSxfcWsxTPLa9HzxG3LQoEURM9WJkvFSLUz/ToOqhwSp+BVwi3FBu8g0kAg2r4Bx6lMyBQ50DGu2IyUgOCJNhzaXEIiXImiX+kvJ7fJ62kofQ9WZnL35NLpdAdTU7oAcXKxUmgXUn5oJmYSkSSl+t9sUL0hsCSPD5HMcmA7DaJbaIFJucepSXMxBQ6sMcCvGaa1VXoYMIehymMVwuzqB5s8lsTlaQdreMZ2TDeyzBTYqHhsAXU5mJlgu7l4zWvwojtUZNdw3Duls13CNFo/hsWyuBjFZKAR6exEg1pOMCIwJ5eOMVe8xM5DsCIY52aLAxjaCaneo6JwNCes6VhxsceWvXzD1TpfIcKZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvTGVuZ3RoIDE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDM2tFAwgMMUQ640AB3mA1IKZW5kc3RyZWFtCmVuZG9iago0NyAwIG9iago8PCAvTGVuZ3RoIDEzMyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFj0sOBCEIRPecoo7Axx/ncTLphXP/7YCdbhNjPYVUgbmCoT0uawOdFR8hGbbxt6mWjkVZPlR6UlYPyeCHrMbLIdygLPCCSSqGIVCLmBqRLWVut4DbNg2yspVTpY6wi6Mwj/a0bBUeX6JbInWSP4PEKi/c47odyKXWu96ii75/pAExCQplbmRzdHJlYW0KZW5kb2JqCjQ4IDAgb2JqCjw8IC9MZW5ndGggMzQwIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSOW4EMQzr/Qp9IIBu2+/ZIEiR/L8NqdkUA3F0UpQ7WlR2y4eFVLXsdPm0ldoSN+R3ZYXECcmrEu1ShkiovFYh1e+ZMq+3NWcEyFKlwuSk5HHJgj/DpacLx/m2sa/lyB2PHlgVI6FEwDLFxOgals7usGZbfpZpwI94hJwr1i3HWAVSG9047Yr3oXktsgaIvZmWigodVokWfkHxoEeNffYYVFgg0e0cSXCMiVCRgHaB2kgMOXssdlEf9DMoMRPo2htF3EGBJZKYOcW6dPTf+NCxoP7YjDe/OirpW1pZY9I+G+2Uxiwy6XpY9HTz1seDCzTvovzn1QwSNGWNksYHrdo5hqKZUVZ4t0OTDc0xxyHzDp7DGQlK+jwUv48lEx2UyN8ODaF/Xx6jjJw23gLmoj9tFQcO4rPDXrmBFUoXa5L3AalM6IHp/6/xtb7X1x8d7YDGCmVuZHN0cmVhbQplbmRvYmoKNDkgMCBvYmoKPDwgL0xlbmd0aCAyNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNTAgMCBvYmoKPDwgL0xlbmd0aCAxNzQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTZBJDkMhDEP3nMIXqIQzwOc8v6q6aO+/rUMHdYH85CBwPDzQcSQudGTojI4rmxzjwLMgY+LROP/JuD7EMUHdoi1Yl3bH2cwSc8IyMQK2RsnZPKLAD8dcCBJklx++wCAiXY/5VvNZk/TPtzvdj7q0Zl89osCJ7AjFsAFXgP26x4FLwvle0+SXKiVjE4fygeoiUjY7oRC1VOxyqoqz3ZsrcBX0/NFD7u0FtSM83wplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvTGVuZ3RoIDU2Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nOOysFQwNjRWyOUyMjJXMDe1VMjhMjY0gLIMzY3AshAxXUNjQyATpBDKhGrO4crgSgMAC7cOSwplbmRzdHJlYW0KZW5kb2JqCjUyIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvTGVuZ3RoIDU2Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nOMyNjBUMDY0VsjlMjQzVtA1NDZUyOGyMICxjAwtwNJgMXNTSyADpA7CgunN4crgSgMAA/cOOAplbmRzdHJlYW0KZW5kb2JqCjUzIDAgb2JqCjw8IC9MZW5ndGggNzUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicM7U0UjBQMDYAEqZmRgqmJuYKKYZcQD6IlctlaGQKZuVwGVmaKVhYABkmZuZQIZiGHC5jU3OgAUBFxqZgGqo/hyuDKw0AlZAS7wplbmRzdHJlYW0KZW5kb2JqCjU0IDAgb2JqCjw8IC9MZW5ndGggNzYgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicPYw7DoAwDEP3nMJHaH4kB0KIgd5/pSm0i/30JNvF0WBakQK3wMnkPqnTcs8kO3wQmyHkVxtata7K0poMi5qMvw3f3U3XC6Y4F8AKZW5kc3RyZWFtCmVuZG9iago1NSAwIG9iago8PCAvTGVuZ3RoIDIxNSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0JNUVFEVitEZWphVnVTYW5zIC9GaXJzdENoYXIgMCAvTGFzdENoYXIgMjU1Ci9Gb250RGVzY3JpcHRvciAxNCAwIFIgL1N1YnR5cGUgL1R5cGUzIC9OYW1lIC9CTVFRRFYrRGVqYVZ1U2FucwovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdCi9DaGFyUHJvY3MgMTYgMCBSCi9FbmNvZGluZyA8PCAvVHlwZSAvRW5jb2RpbmcKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQ0IC9jb21tYSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUKL3NpeCAvc2V2ZW4gL2VpZ2h0IC9uaW5lIDcxIC9HIC9IIDkxIC9icmFja2V0bGVmdCA5MyAvYnJhY2tldHJpZ2h0IDk3IC9hIDk5Ci9jIC9kIC9lIC9mIDEwNCAvaCAvaSAxMDcgL2sgL2wgMTEwIC9uIC9vIC9wIDExNCAvciAvcyAvdCAvdSAvdiAxMjIgL3ogMTI0Ci9iYXIgXQo+PgovV2lkdGhzIDEzIDAgUiA+PgplbmRvYmoKMTQgMCBvYmoKPDwgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250TmFtZSAvQk1RUURWK0RlamFWdVNhbnMgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0FzY2VudCA5MjkgL0Rlc2NlbnQgLTIzNiAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTM0MiA+PgplbmRvYmoKMTMgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTYgMCBvYmoKPDwgL0cgMTcgMCBSIC9IIDE4IDAgUiAvYSAxOSAwIFIgL2JhciAyMCAwIFIgL2JyYWNrZXRsZWZ0IDIxIDAgUgovYnJhY2tldHJpZ2h0IDIyIDAgUiAvYyAyMyAwIFIgL2NvbW1hIDI0IDAgUiAvZCAyNSAwIFIgL2UgMjYgMCBSCi9laWdodCAyNyAwIFIgL2YgMjggMCBSIC9maXZlIDI5IDAgUiAvZm91ciAzMCAwIFIgL2ggMzEgMCBSIC9pIDMyIDAgUgovayAzMyAwIFIgL2wgMzQgMCBSIC9uIDM2IDAgUiAvbmluZSAzNyAwIFIgL28gMzggMCBSIC9vbmUgMzkgMCBSIC9wIDQwIDAgUgovcGVyaW9kIDQxIDAgUiAvciA0MiAwIFIgL3MgNDMgMCBSIC9zZXZlbiA0NCAwIFIgL3NpeCA0NSAwIFIgL3NwYWNlIDQ2IDAgUgovdCA0NyAwIFIgL3RocmVlIDQ4IDAgUiAvdHdvIDQ5IDAgUiAvdSA1MCAwIFIgL3YgNTMgMCBSIC96IDU0IDAgUgovemVybyA1NSAwIFIgPj4KZW5kb2JqCjYwIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTEwMDAgLTM2MyAxNTAzIDE1NjYgXQovTGVuZ3RoIDIzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UDGOBDEI6+cVfCBSCGCS95x0umLv/+0aZnY7y05s42vohmRM+b+GQhu+HjhdhqYLkDLWXAI78nONZVOgSg5L4mwZNmcDiqZ4OFOCQ+Ah4O8SYxPS1nAIaGuZ9Jotbr5Tk+F0w5oEy5jZojsEXhzLIArsAp0ZRjGZGcmSm5lxvAHFcmoOXiJrA2QQLfIXvMRTmVkgPqfk0oavG4IVRrI0Nksij+RdHMGxWKGjasARz6jVLfzmnAm5ao+DTzfzvNc1zomomfuq7JnjPJxl9x1LT19Q4uSHQ1Hblv76zfy7ft88LlhnCmVuZHN0cmVhbQplbmRvYmoKNTggMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9KWUhUR0krU1RJWFNpemVPbmVTeW0tUmVndWxhciAvRmlyc3RDaGFyIDAKL0xhc3RDaGFyIDI1NSAvRm9udERlc2NyaXB0b3IgNTcgMCBSIC9TdWJ0eXBlIC9UeXBlMwovTmFtZSAvSllIVEdJK1NUSVhTaXplT25lU3ltLVJlZ3VsYXIgL0ZvbnRCQm94IFsgLTEwMDAgLTM2MyAxNTAzIDE1NjYgXQovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvQ2hhclByb2NzIDU5IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nIC9EaWZmZXJlbmNlcyBbIF0gPj4gL1dpZHRocyA1NiAwIFIgPj4KZW5kb2JqCjU3IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0pZSFRHSStTVElYU2l6ZU9uZVN5bS1SZWd1bGFyCi9GbGFncyAzMiAvRm9udEJCb3ggWyAtMTAwMCAtMzYzIDE1MDMgMTU2NiBdIC9Bc2NlbnQgMTU4OCAvRGVzY2VudCAtMzYzCi9DYXBIZWlnaHQgMCAvWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMDAwID4+CmVuZG9iago1NiAwIG9iagpbIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MAoyNTAgMjUwIDI1MCA0NjggNDY4IDI1MCAyNTAgMjUwIDI1MCAyNTAgNTc5IDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAKMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAzODMgNTc5IDM4MwoyNTAgMTAwMCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAKMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCA1NzUgMjUwIDU3NSAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgNTYwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MAoyNTAgMjUwIDU1OCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAKMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MAoyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAKMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwCjI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgMjUwIDI1MCAyNTAgXQplbmRvYmoKNTkgMCBvYmoKPDwgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE1IDAgUiAvRjIgNTggMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAwIC9jYSAxID4+Ci9BMiA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAxIC9jYSAxID4+Ci9BMyA8PCAvVHlwZSAvRXh0R1N0YXRlIC9DQSAwLjggL2NhIDAuOCA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy1taW51cyAzNSAwIFIgL0YxLURlamFWdVNhbnMtdW5pMjdFOCA1MSAwIFIKL0YxLURlamFWdVNhbnMtdW5pMjdFOSA1MiAwIFIgL0YyLVNUSVhTaXpPbmVTeW1SZWctdW5pMDMwMyA2MCAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjYxIDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjkuMikKL0NyZWF0aW9uRGF0ZSAoRDoyMDI0MTAwMjA4MTYxMS0wNCcwMCcpID4+CmVuZG9iagp4cmVmCjAgNjIKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMjQ2ODUgMDAwMDAgbiAKMDAwMDAyNDMxMyAwMDAwMCBuIAowMDAwMDI0MzU2IDAwMDAwIG4gCjAwMDAwMjQ0OTggMDAwMDAgbiAKMDAwMDAyNDUxOSAwMDAwMCBuIAowMDAwMDI0NTQwIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM0MyAwMDAwMCBuIAowMDAwMDEwODE0IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAxMDc5MiAwMDAwMCBuIAowMDAwMDIwODI5IDAwMDAwIG4gCjAwMDAwMjA2MjIgMDAwMDAgbiAKMDAwMDAyMDA5MCAwMDAwMCBuIAowMDAwMDIxODgyIDAwMDAwIG4gCjAwMDAwMTA4MzQgMDAwMDAgbiAKMDAwMDAxMTE1NCAwMDAwMCBuIAowMDAwMDExMzA1IDAwMDAwIG4gCjAwMDAwMTE2ODUgMDAwMDAgbiAKMDAwMDAxMTgxMyAwMDAwMCBuIAowMDAwMDExOTU4IDAwMDAwIG4gCjAwMDAwMTIwOTkgMDAwMDAgbiAKMDAwMDAxMjQwNCAwMDAwMCBuIAowMDAwMDEyNTQ0IDAwMDAwIG4gCjAwMDAwMTI4NDggMDAwMDAgbiAKMDAwMDAxMzE3MCAwMDAwMCBuIAowMDAwMDEzNjM4IDAwMDAwIG4gCjAwMDAwMTM4NDcgMDAwMDAgbiAKMDAwMDAxNDE2OSAwMDAwMCBuIAowMDAwMDE0MzM1IDAwMDAwIG4gCjAwMDAwMTQ1NzIgMDAwMDAgbiAKMDAwMDAxNDcxNiAwMDAwMCBuIAowMDAwMDE0ODcxIDAwMDAwIG4gCjAwMDAwMTQ5OTAgMDAwMDAgbiAKMDAwMDAxNTE2MiAwMDAwMCBuIAowMDAwMDE1Mzk4IDAwMDAwIG4gCjAwMDAwMTU3OTMgMDAwMDAgbiAKMDAwMDAxNjA4NCAwMDAwMCBuIAowMDAwMDE2MjM5IDAwMDAwIG4gCjAwMDAwMTY1NTEgMDAwMDAgbiAKMDAwMDAxNjY3NCAwMDAwMCBuIAowMDAwMDE2OTA3IDAwMDAwIG4gCjAwMDAwMTczMTQgMDAwMDAgbiAKMDAwMDAxNzQ1NiAwMDAwMCBuIAowMDAwMDE3ODQ5IDAwMDAwIG4gCjAwMDAwMTc5MzkgMDAwMDAgbiAKMDAwMDAxODE0NSAwMDAwMCBuIAowMDAwMDE4NTU4IDAwMDAwIG4gCjAwMDAwMTg4ODIgMDAwMDAgbiAKMDAwMDAxOTEyOSAwMDAwMCBuIAowMDAwMDE5MzE4IDAwMDAwIG4gCjAwMDAwMTk1MDcgMDAwMDAgbiAKMDAwMDAxOTY1NCAwMDAwMCBuIAowMDAwMDE5ODAyIDAwMDAwIG4gCjAwMDAwMjMyNDYgMDAwMDAgbiAKMDAwMDAyMzAyNiAwMDAwMCBuIAowMDAwMDIyNjk1IDAwMDAwIG4gCjAwMDAwMjQyOTEgMDAwMDAgbiAKMDAwMDAyMjMzMCAwMDAwMCBuIAowMDAwMDI0NzQ1IDAwMDAwIG4gCnRyYWlsZXIKPDwgL1NpemUgNjIgL1Jvb3QgMSAwIFIgL0luZm8gNjEgMCBSID4+CnN0YXJ0eHJlZgoyNDkwMgolJUVPRgo=", + "image/svg+xml": "\n\n\n \n \n \n \n 2024-10-02T08:16:11.158863\n image/svg+xml\n \n \n Matplotlib v3.9.2, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "text/plain": "
" }, "metadata": {}, "output_type": "display_data" @@ -567,7 +552,7 @@ "omega_d = omega_d_linspace[omega_d_idx]\n", "displaced_state = ft.DisplacedState(\n", " hilbert_dim=floquet_analysis.hilbert_dim,\n", - " drive_parameters=drive_parameters,\n", + " model=model,\n", " state_indices=state_indices,\n", " options=options,\n", ")\n", diff --git a/docs/floquet.md b/docs/floquet.md index 55b17fb..09d0151 100644 --- a/docs/floquet.md +++ b/docs/floquet.md @@ -14,9 +14,9 @@ The **floquet** Python API consists largely of the **floquet_analysis** function options: show_source: false -## Drive parameters +## Model -::: floquet.drive_parameters +::: floquet.model options: show_source: false diff --git a/floquet/__init__.py b/floquet/__init__.py index 47c1cca..618b6b8 100644 --- a/floquet/__init__.py +++ b/floquet/__init__.py @@ -4,8 +4,8 @@ from .floquet import ( DisplacedState as DisplacedState, DisplacedStateFit as DisplacedStateFit, - DriveParameters as DriveParameters, FloquetAnalysis as FloquetAnalysis, + Model as Model, ) from .options import Options as Options from .utils.file_io import ( diff --git a/floquet/amplitude_converters.py b/floquet/amplitude_converters.py index c6ebdff..3907cf3 100644 --- a/floquet/amplitude_converters.py +++ b/floquet/amplitude_converters.py @@ -16,16 +16,12 @@ class ChiacToAmp: """ # noqa E501 def __init__( - self, - H0: qt.Qobj, - H1: qt.Qobj, - state_indices: list, - omega_d_linspace: np.ndarray, + self, H0: qt.Qobj, H1: qt.Qobj, state_indices: list, omega_d_values: np.ndarray ): self.H0 = H0 self.H1 = H1 self.state_indices = state_indices - self.omega_d_linspace = omega_d_linspace + self.omega_d_linspace = omega_d_values def amplitudes_for_omega_d(self, chi_ac_linspace: np.ndarray) -> np.ndarray: r"""Return drive amplitudes corresponding to $\chi_{\rm ac}$ values.""" diff --git a/floquet/displaced_state.py b/floquet/displaced_state.py index 2fb4604..4cf82b6 100644 --- a/floquet/displaced_state.py +++ b/floquet/displaced_state.py @@ -7,7 +7,7 @@ import qutip as qt import scipy as sp -from .drive_parameters import DriveParameters +from .model import Model from .options import Options from .utils.parallel import parallel_map @@ -17,20 +17,17 @@ class DisplacedState: Parameters: hilbert_dim: Hilbert space dimension - drive_parameters: Drive parameters used + model: Model including the Hamiltonian, drive amplitudes, frequencies, + state indices state_indices: States of interest options: Options used """ def __init__( - self, - hilbert_dim: int, - drive_parameters: DriveParameters, - state_indices: list, - options: Options, + self, hilbert_dim: int, model: Model, state_indices: list, options: Options ): self.hilbert_dim = hilbert_dim - self.drive_parameters = drive_parameters + self.model = model self.state_indices = state_indices self.options = options self.exponent_pair_idx_map = self._create_exponent_pair_idx_map() @@ -73,19 +70,16 @@ def overlap_with_bare_states( def _compute_bare_state( omega_d: float, _array_idx: int = array_idx, _state_idx: int = state_idx ) -> np.ndarray: - omega_d_idx = self.drive_parameters.omega_d_to_idx(omega_d) + omega_d_idx = self.model.omega_d_to_idx(omega_d) return self.displaced_state( omega_d, - self.drive_parameters.drive_amplitudes[amp_idx_0, omega_d_idx], + self.model.drive_amplitudes[amp_idx_0, omega_d_idx], _state_idx, coefficients=coefficients[_array_idx], ).full()[:, 0] bare_states = np.array( - [ - _compute_bare_state(omega_d) - for omega_d in self.drive_parameters.omega_d_values - ], + [_compute_bare_state(omega_d) for omega_d in self.model.omega_d_values], dtype=complex, ) # bare states may differ as a function of omega_d, hence the bare states @@ -123,8 +117,8 @@ def _run_overlap_displaced(omega_d_amp: tuple[float, float]) -> np.ndarray: omega_d, amp = omega_d_amp for array_idx, state_idx in enumerate(self.state_indices): floquet_mode_for_idx = floquet_modes[ - self.drive_parameters.omega_d_to_idx(omega_d), - self.drive_parameters.amp_to_idx(amp, omega_d), + self.model.omega_d_to_idx(omega_d), + self.model.amp_to_idx(amp, omega_d), array_idx, ] disp_state = self.displaced_state( @@ -138,10 +132,8 @@ def _run_overlap_displaced(omega_d_amp: tuple[float, float]) -> np.ndarray: ) return overlap - omega_d_amp_params = self.drive_parameters.omega_d_amp_params(amp_idxs) - amp_range_vals = self.drive_parameters.drive_amplitudes[ - amp_idxs[0] : amp_idxs[1] - ] + omega_d_amp_params = self.model.omega_d_amp_params(amp_idxs) + amp_range_vals = self.model.drive_amplitudes[amp_idxs[0] : amp_idxs[1]] result = list( parallel_map( self.options.num_cpus, _run_overlap_displaced, omega_d_amp_params @@ -149,7 +141,7 @@ def _run_overlap_displaced(omega_d_amp: tuple[float, float]) -> np.ndarray: ) return np.array(result).reshape( ( - len(self.drive_parameters.omega_d_values), + len(self.model.omega_d_values), len(amp_range_vals), len(self.state_indices), ) @@ -211,12 +203,8 @@ def _create_exponent_pair_idx_map(self) -> dict: but the fit is nominally set to order four. We additionally eliminate the constant term that should always be either zero or one. """ - cutoff_omega_d = min( - len(self.drive_parameters.omega_d_values), self.options.fit_cutoff - ) - cutoff_amp = min( - len(self.drive_parameters.drive_amplitudes), self.options.fit_cutoff - ) + cutoff_omega_d = min(len(self.model.omega_d_values), self.options.fit_cutoff) + cutoff_amp = min(len(self.model.drive_amplitudes), self.options.fit_cutoff) idx_exp_map = [ (idx_1, idx_2) for idx_1 in range(cutoff_omega_d) diff --git a/floquet/floquet.py b/floquet/floquet.py index 3aa6bd2..9a591fd 100644 --- a/floquet/floquet.py +++ b/floquet/floquet.py @@ -6,7 +6,7 @@ import qutip as qt from .displaced_state import DisplacedState, DisplacedStateFit -from .drive_parameters import DriveParameters +from .model import Model from .options import Options from .utils.file_io import Serializable from .utils.parallel import parallel_map @@ -20,12 +20,8 @@ class FloquetAnalysis(Serializable): workflow, see the [transmon](../examples/transmon) tutorial. Arguments: - H0: Drift Hamiltonian, which must be diagonal and provided in units such that - H0 can be passed directly to qutip. - H1: Drive operator, which should be unitless (for instance the charge-number - operator n of the transmon). It will be multiplied by a drive amplitude - that we scan over from drive_parameters.drive_amplitudes. - drive_parameters: Class specifying the drive amplitudes and frequencies + model: Class specifying the model, including the Hamiltonian, drive amplitudes, + frequencies state_indices: State indices of interest. Defaults to [0, 1], indicating the two lowest-energy states. options: Options for the Floquet analysis. @@ -34,37 +30,22 @@ class FloquetAnalysis(Serializable): def __init__( self, - H0: qt.Qobj | np.ndarray | list, - H1: qt.Qobj | np.ndarray | list, - drive_parameters: DriveParameters, + model: Model, state_indices: list | None = None, options: Options = Options(), # noqa B008 init_data_to_save: dict | None = None, ): if state_indices is None: state_indices = [0, 1] - if not isinstance(H0, qt.Qobj): - H0 = qt.Qobj(np.array(H0, dtype=complex)) - if not isinstance(H1, qt.Qobj): - H1 = qt.Qobj(np.array(H1, dtype=complex)) - self.H0 = H0 - self.H1 = H1 - self.drive_parameters = drive_parameters + self.model = model self.state_indices = state_indices self.options = options self.init_data_to_save = init_data_to_save - # Save in _init_attrs for later re-initialization. Everything added to self - # after this is a derived quantity - self.hilbert_dim = H0.shape[0] + self.hilbert_dim = model.H0.shape[0] def __str__(self) -> str: return "Running floquet simulation with parameters: \n" + super().__str__() - def hamiltonian(self, params: tuple[float, float]) -> list[qt.Qobj]: - """Return the Hamiltonian we actually simulate.""" - omega_d, amp = params - return [self.H0, [amp * self.H1, lambda t, _: np.cos(omega_d * t)]] - def run_one_floquet( self, omega_d_amp: tuple[float, float] ) -> tuple[np.ndarray, qt.Qobj]: @@ -78,7 +59,7 @@ def run_one_floquet( omega_d, _ = omega_d_amp T = 2.0 * np.pi / omega_d f_modes_0, f_energies_0 = qt.floquet_modes( - self.hamiltonian(omega_d_amp), # type: ignore + self.model.hamiltonian(omega_d_amp), # type: ignore T, options=qt.Options(nsteps=self.options.nsteps), ) @@ -88,7 +69,7 @@ def run_one_floquet( f_modes_0, f_energies_0, sampling_time, - self.hamiltonian(omega_d_amp), # type: ignore + self.model.hamiltonian(omega_d_amp), # type: ignore T, options=qt.Options(nsteps=self.options.nsteps), ) @@ -223,8 +204,8 @@ def run(self, filepath: str | None = None) -> dict: # initialize all arrays that will contain our data array_shape = ( - len(self.drive_parameters.omega_d_values), - len(self.drive_parameters.drive_amplitudes), + len(self.model.omega_d_values), + len(self.model.drive_amplitudes), len(self.state_indices), ) bare_state_overlaps = np.zeros(array_shape) @@ -234,8 +215,8 @@ def run(self, filepath: str | None = None) -> dict: floquet_modes = np.zeros((*array_shape, self.hilbert_dim), dtype=complex) avg_excitation = np.zeros( ( - len(self.drive_parameters.omega_d_values), - len(self.drive_parameters.drive_amplitudes), + len(self.model.omega_d_values), + len(self.model.drive_amplitudes), self.hilbert_dim, ) ) @@ -247,12 +228,11 @@ def run(self, filepath: str | None = None) -> dict: # coefficients, whereas for the Blais calculation, the bare modes are specified # as actual kets. prev_f_modes_arr = np.tile( - self.bare_state_array()[None, :, :], - (len(self.drive_parameters.omega_d_values), 1, 1), + self.bare_state_array()[None, :, :], (len(self.model.omega_d_values), 1, 1) ) displaced_state = DisplacedStateFit( hilbert_dim=self.hilbert_dim, - drive_parameters=self.drive_parameters, + model=self.model, state_indices=self.state_indices, options=self.options, ) @@ -264,13 +244,13 @@ def run(self, filepath: str | None = None) -> dict: ) num_fit_ranges = int(np.ceil(1 / self.options.fit_range_fraction)) num_amp_pts_per_range = int( - np.floor(len(self.drive_parameters.drive_amplitudes) / num_fit_ranges) + np.floor(len(self.model.drive_amplitudes) / num_fit_ranges) ) for amp_range_idx in range(num_fit_ranges): print(f"calculating for amp_range_idx={amp_range_idx}") # edge case if range doesn't fit in neatly if amp_range_idx == num_fit_ranges - 1: - amp_range_idx_final = len(self.drive_parameters.drive_amplitudes) + amp_range_idx_final = len(self.model.drive_amplitudes) else: amp_range_idx_final = (amp_range_idx + 1) * num_amp_pts_per_range amp_idxs = [amp_range_idx * num_amp_pts_per_range, amp_range_idx_final] @@ -305,7 +285,7 @@ def run(self, filepath: str | None = None) -> dict: ovlp_with_bare_states = displaced_state.overlap_with_bare_states( amp_idxs[0], previous_coefficients, floquet_modes_for_range ) - omega_d_amp_slice = list(self.drive_parameters.omega_d_amp_params(amp_idxs)) + omega_d_amp_slice = list(self.model.omega_d_amp_params(amp_idxs)) # Compute the fitted 'ideal' displaced state, excluding those # floquet modes experiencing resonances. new_coefficients = displaced_state.displaced_states_fit( @@ -333,8 +313,8 @@ def run(self, filepath: str | None = None) -> dict: # (stored in intermediate_displaced_state_overlaps) to obtain the mask with # which we exclude some data from the fit (because we suspect they've hit # resonances). - amp_idxs = [0, len(self.drive_parameters.drive_amplitudes)] - omega_d_amp_slice = list(self.drive_parameters.omega_d_amp_params(amp_idxs)) + amp_idxs = [0, len(self.model.drive_amplitudes)] + omega_d_amp_slice = list(self.model.omega_d_amp_params(amp_idxs)) full_displaced_fit = displaced_state.displaced_states_fit( omega_d_amp_slice, intermediate_displaced_state_overlaps, floquet_modes ) @@ -371,14 +351,12 @@ def _floquet_main_for_amp_range( prev_f_modes_arr: np.ndarray, ) -> tuple: """Run the floquet simulation over a specific amplitude range.""" - amp_range_vals = self.drive_parameters.drive_amplitudes[ - amp_idxs[0] : amp_idxs[1] - ] + amp_range_vals = self.model.drive_amplitudes[amp_idxs[0] : amp_idxs[1]] def _run_floquet_and_calculate( omega_d: float, ) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: - omega_d_idx = self.drive_parameters.omega_d_to_idx(omega_d) + omega_d_idx = self.model.omega_d_to_idx(omega_d) amps_for_omega_d = amp_range_vals[:, omega_d_idx] avg_excitation_arr = np.zeros((len(amps_for_omega_d), self.hilbert_dim)) quasienergies_arr = np.zeros_like(avg_excitation_arr) @@ -414,7 +392,7 @@ def _run_floquet_and_calculate( parallel_map( self.options.num_cpus, _run_floquet_and_calculate, - self.drive_parameters.omega_d_values, + self.model.omega_d_values, ) ) ( @@ -425,32 +403,20 @@ def _run_floquet_and_calculate( ) = list(zip(*floquet_data, strict=True)) floquet_mode_array = np.array(all_modes_quasies_ovlps, dtype=complex).reshape( ( - len(self.drive_parameters.omega_d_values), + len(self.model.omega_d_values), len(amp_range_vals), len(self.state_indices), 1 + self.hilbert_dim, ) ) f_modes_last_amp = np.array(f_modes_last_amp, dtype=complex).reshape( - ( - len(self.drive_parameters.omega_d_values), - self.hilbert_dim, - self.hilbert_dim, - ) + (len(self.model.omega_d_values), self.hilbert_dim, self.hilbert_dim) ) all_avg_excitation = np.array(all_avg_excitation).reshape( - ( - len(self.drive_parameters.omega_d_values), - len(amp_range_vals), - self.hilbert_dim, - ) + (len(self.model.omega_d_values), len(amp_range_vals), self.hilbert_dim) ) all_quasienergies = np.array(all_quasienergies).reshape( - ( - len(self.drive_parameters.omega_d_values), - len(amp_range_vals), - self.hilbert_dim, - ) + (len(self.model.omega_d_values), len(amp_range_vals), self.hilbert_dim) ) bare_state_overlaps = np.abs(floquet_mode_array[..., 0]) floquet_modes = floquet_mode_array[..., 1:] diff --git a/floquet/drive_parameters.py b/floquet/model.py similarity index 59% rename from floquet/drive_parameters.py rename to floquet/model.py index a571f9d..2caafdf 100644 --- a/floquet/drive_parameters.py +++ b/floquet/model.py @@ -4,22 +4,39 @@ from itertools import chain, product import numpy as np +import qutip as qt from .utils.file_io import Serializable -class DriveParameters(Serializable): - """Class that handles the drive strength and frequency. +class Model(Serializable): + """Specify the model, including the Hamiltonian, drive strengths and frequencies. Parameters: + H0: Drift Hamiltonian, which must be diagonal and provided in units such that + H0 can be passed directly to qutip. + H1: Drive operator, which should be unitless (for instance the charge-number + operator n of the transmon). It will be multiplied by a drive amplitude + that we scan over from drive_parameters.drive_amplitudes. omega_d_values: drive frequencies to scan over drive_amplitudes: amp values to scan over. Can be one dimensional in which case these amplitudes are used for all omega_d, or it can be two dimensional in which case the first dimension are the amplitudes to scan over and the second are the amplitudes for respective drive frequencies + """ - def __init__(self, omega_d_values: np.ndarray, drive_amplitudes: np.ndarray): + def __init__( + self, + H0: qt.Qobj | np.ndarray | list, + H1: qt.Qobj | np.ndarray | list, + omega_d_values: np.ndarray, + drive_amplitudes: np.ndarray, + ): + if not isinstance(H0, qt.Qobj): + H0 = qt.Qobj(np.array(H0, dtype=complex)) + if not isinstance(H1, qt.Qobj): + H1 = qt.Qobj(np.array(H1, dtype=complex)) if isinstance(omega_d_values, list): omega_d_values = np.array(omega_d_values) if isinstance(drive_amplitudes, list): @@ -29,6 +46,9 @@ def __init__(self, omega_d_values: np.ndarray, drive_amplitudes: np.ndarray): else: assert len(drive_amplitudes.shape) == 2 assert drive_amplitudes.shape[1] == len(omega_d_values) + + self.H0 = H0 + self.H1 = H1 self.omega_d_values = omega_d_values self.drive_amplitudes = drive_amplitudes @@ -37,7 +57,11 @@ def omega_d_to_idx(self, omega_d: float) -> np.ndarray[int]: return np.argmin(np.abs(self.omega_d_values - omega_d)) def amp_to_idx(self, amp: float, omega_d: float) -> np.ndarray[int]: - """Return index corresponding to amplitude value.""" + """Return index corresponding to amplitude value. + + Because the drive amplitude can depend on the drive frequency, we also must pass + the drive frequency here. + """ omega_d_idx = self.omega_d_to_idx(omega_d) return np.argmin(np.abs(self.drive_amplitudes[:, omega_d_idx] - amp)) @@ -51,3 +75,8 @@ def omega_d_amp_params(self, amp_idxs: list) -> itertools.chain: ) ] return chain(*_omega_d_amp_params) + + def hamiltonian(self, omega_d_amp: tuple[float, float]) -> list[qt.Qobj]: + """Return the Hamiltonian we actually simulate.""" + omega_d, amp = omega_d_amp + return [self.H0, [amp * self.H1, lambda t, _: np.cos(omega_d * t)]] diff --git a/tests/test_floquet.py b/tests/test_floquet.py index 28ce0b1..d15e996 100644 --- a/tests/test_floquet.py +++ b/tests/test_floquet.py @@ -9,8 +9,8 @@ from floquet import ( ChiacToAmp, DisplacedState, - DriveParameters, FloquetAnalysis, + Model, Options, read_from_file, XiSqToAmp, @@ -45,28 +45,23 @@ def setup_floquet() -> tuple: options = Options(fit_range_fraction=0.5, num_cpus=6) chi_to_amp = ChiacToAmp(H0, H1, state_indices, omega_d_values) drive_amplitudes = chi_to_amp.amplitudes_for_omega_d(chi_ac_linspace) - drive_parameters = DriveParameters(omega_d_values, drive_amplitudes) + model = Model(H0, H1, omega_d_values, drive_amplitudes) floquet_transmon = FloquetAnalysis( - H0, - H1, - drive_parameters, - state_indices=state_indices, - options=options, - init_data_to_save=INIT_DATA_TO_SAVE, + model, state_indices, options=options, init_data_to_save=INIT_DATA_TO_SAVE ) return floquet_transmon, chi_to_amp, chi_ac_linspace def test_chi_vs_xi(setup_floquet: tuple): floquet_transmon, _, chi_ac_linspace = setup_floquet - amps_from_chi_ac = floquet_transmon.drive_parameters.drive_amplitudes + amps_from_chi_ac = floquet_transmon.model.drive_amplitudes EC = floquet_transmon.init_data_to_save["EC"] xi_sq_linspace = 2.0 * chi_ac_linspace / EC / 2 / np.pi xi_sq_to_amp = XiSqToAmp( - floquet_transmon.H0, - floquet_transmon.H1, + floquet_transmon.model.H0, + floquet_transmon.model.H1, floquet_transmon.state_indices, - floquet_transmon.drive_parameters.omega_d_values, + floquet_transmon.model.omega_d_values, ) amps_from_xi_sq = xi_sq_to_amp.amplitudes_for_omega_d(xi_sq_linspace) rel_diff = np.abs( @@ -85,13 +80,13 @@ def test_displaced_fit_and_reinit(setup_floquet: tuple, tmp_path: pathlib.Path): chi_ac_vals = np.array([0.01, 0.03, 0.05, 0.08, 0.1, 0.15, 0.19]) omega_d_chi_ac = itertools.product(omega_d_vals, chi_ac_vals) for omega_d, chi_ac in omega_d_chi_ac: - omega_d_idx = floquet_transmon.drive_parameters.omega_d_to_idx(omega_d) + omega_d_idx = floquet_transmon.model.omega_d_to_idx(omega_d) amp = chi_to_amp.amplitudes_for_omega_d(chi_ac)[0, omega_d_idx] for array_idx, state_idx in enumerate(floquet_transmon.state_indices): disp_coeffs = data_dict["fit_data"] displaced_state = DisplacedState( floquet_transmon.hilbert_dim, - floquet_transmon.drive_parameters, + floquet_transmon.model, floquet_transmon.state_indices, floquet_transmon.options, ) @@ -127,7 +122,7 @@ def test_displaced_bare_state(setup_floquet: tuple): floquet_transmon, _, _ = setup_floquet displaced_state = DisplacedState( floquet_transmon.hilbert_dim, - floquet_transmon.drive_parameters, + floquet_transmon.model, floquet_transmon.state_indices, floquet_transmon.options, )