-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathvector_stacked.h
881 lines (772 loc) · 36.3 KB
/
vector_stacked.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
/* -*- C++ -*-
* vector_stacked.h
*
* Copyright 2018,2020 Daniel Kondor <[email protected]>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of the nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
*/
/**
* \class stacked_vector::vector
*
* \brief C++ vector-like container that internally maintains a "stack"
* of vectors instead of having one large resizeable storage.
*
* @tparam T Type stored in this vector.
* @tparam vector_type Container type to use for storing pointers to
* the individual arrays
*
* Main motivation for this class are the following perceived issues with std::vector:
*
* 1. An std::vector always grows by a fixed factor (typically 2, i.e. doubling
* capacity on most implementations). This is required to avoid O(n^2) copies
* of elements if growing a vector requires copying all elements (see below).
* Thus, if a vector is full with N elements, memory requirement jumps up to
* 2*N, which might end up wasting memory space.
*
* 2. Since the stored type in std::vector is not necessarily trivially copyable
* (cannot be moved with memcopy() / memmove()), any change in capacity needs
* to be performed in three steps: 1\. allocate new memory; 2\. copy elements;
* 3\. free previous memory. This way, it is not possible to use any optimizations
* offered by realloc() (e.g. using mremap() on Linux for large allocations).
* Growing a vector of size N then actually requires allocating memory in total
* for 3*N elements, and using 2*N elements of it for the duration of the grow.
*
* This class addresses these issues by storing multiple arrays of fixed size
* instead of one large allocation. These array are stored in a "stack", thus
* they can be dynamically added or removed. Growing the vector then results
* in fixed memory allocations and there is no need to copy / move elements.
*
* The downside is that indexing is more complicated, i.e. it includes an extra
* division and an extra memory lookup operation, thus it can be significantly
* slower than using a regular vector.
*
* This can be mitigated by optimizing divide operations with the use of the
* [libdivide library](https://github.com/ridiculousfish/libdivide). To do this,
* download libdivide.h and place it in the same directory and define
* USE_LIBDIVIDE (e.g. by the by adding -DUSE_LIBDIVIDE command line argument
* if compiling with g++).
*
*/
#ifndef VECTOR_STACKED_H
#define VECTOR_STACKED_H
#include <limits>
#include <new>
#include <stdexcept>
#include <vector>
#include <type_traits>
#include <iterator>
#include <stdlib.h>
#include <string.h>
/* constexpr if support only for c++17 or newer */
#if __cplusplus >= 201703L
#define CONSTEXPR constexpr
#else
#define CONSTEXPR
#endif
#ifdef USE_LIBDIVIDE
#include "libdivide.h"
namespace stacked_vector {
/// \brief Optional support for the libdivide library to speed up vector element
/// access. Get it from https://github.com/ridiculousfish/libdivide and enable
/// with the USE_LIBDIVIDE define (e.g. by adding -DUSE_LIBDIVIDE command line
/// option when compiling with g++).
struct divider {
size_t n;
libdivide::divider<size_t> div;
explicit divider(size_t x):n(x),div(x) { }
bool operator == (size_t x) const { return n == x; }
bool operator != (size_t x) const { return n != x; }
bool operator < (size_t x) const { return n < x; }
bool operator <= (size_t x) const { return n <= x; }
bool operator > (size_t x) const { return n > x; }
bool operator >= (size_t x) const { return n >= x; }
};
size_t operator / (size_t x, const divider& d) { return x / d.div; }
size_t& operator /= (size_t& x, const divider& d) { x /= d.div; return x; }
size_t operator * (size_t x, const divider& d) { return x * d.n; }
size_t& operator *= (size_t& x, const divider& d) { x *= d.n; return x; }
size_t operator + (size_t x, const divider& d) { return x + d.n; }
size_t& operator += (size_t& x, const divider& d) { x += d.n; return x; }
size_t operator - (size_t x, const divider& d) { return x - d.n; }
size_t& operator -= (size_t& x, const divider& d) { x -= d.n; return x; }
bool operator == (size_t x, const divider& d) { return d == x; }
bool operator != (size_t x, const divider& d) { return d != x; }
bool operator > (size_t x, const divider& d) { return d < x; }
bool operator >= (size_t x, const divider& d) { return d <= x; }
bool operator < (size_t x, const divider& d) { return d > x; }
bool operator <= (size_t x, const divider& d) { return d >= x; }
}
#endif
namespace stacked_vector {
/** \brief helper to distinguish iterators */
template<class It>
struct at_least_forward_iterator {
constexpr static bool value =
std::is_same< typename std::iterator_traits<It>::iterator_category, typename std::forward_iterator_tag >::value ||
std::is_same< typename std::iterator_traits<It>::iterator_category, typename std::bidirectional_iterator_tag >::value ||
std::is_same< typename std::iterator_traits<It>::iterator_category, typename std::random_access_iterator_tag >::value
#if __cplusplus >= 202000L
|| std::is_same< typename std::iterator_traits<It>::iterator_category, typename std::contiguous_iterator_tag >::value
#endif
;
};
/** \brief helper to distinguish iterators */
template<class It>
struct at_least_input_iterator {
constexpr static bool value = at_least_forward_iterator<It>::value ||
std::is_same< typename std::iterator_traits<It>::iterator_category, typename std::input_iterator_tag >::value;
};
template <class T>
using std_vector_wrapper = std::vector<T>;
template <class T, template<class> class vector_type = std_vector_wrapper>
class vector {
protected:
vector_type<T*> stack;
size_t p_size; /**< \brief number of elements in vector */
size_t p_capacity; /**< \brief current capacity of vector */
size_t p_stack_size; /**< \brief size of one array in the stack */
#ifdef USE_LIBDIVIDE
divider max_grow;
#else
size_t max_grow; /**< \brief grow memory by maximum this many elements at a time, i.e. maximum value for p_stack_size. Does not change, but not const to allow for swapping / copying / moving vectors with different value. */
#endif
/// \brief maximum safe capacity to avoid overflow
static constexpr size_t p_max_capacity = std::numeric_limits<size_t>::max() / sizeof(T);
/// \brief Helper function to copy or move values to new array,
/// selecting copy or move based on SFINAE
template<class U = T>
bool copy_or_move(U* target, size_t new_size,
typename std::enable_if< std::is_nothrow_move_constructible<U>::value >::type* = 0) {
size_t i;
for(i=0;i<p_size;i++) {
if(i<new_size) new(target + i) U(std::move(stack[0][i]));
stack[0][i].~U();
}
return true;
}
template<class U = T>
bool copy_or_move(U* target, size_t new_size,
typename std::enable_if< ! std::is_nothrow_move_constructible<U>::value >::type* = 0) {
size_t copy_size = p_size < new_size ? p_size : new_size;
U* tmp = std::uninitialized_copy(stack[0], stack[0] + copy_size, target);
if(tmp != target + copy_size) return false;
for(size_t i=0;i<p_size;i++) stack[0][i].~U();
}
/// \brief Reallocate memory in the first stack element to the
/// given new size, moving / copying elements to the new location.
/// new_size must be > 0, but can be less than p_size
bool change_size(size_t new_size) {
if(new_size > max_grow) return false;
if(new_size == p_stack_size) return true;
T* new_array = (T*)malloc(sizeof(T)*new_size);
if(!new_array) return false;
if(stack.size() == 0) {
try {
stack.push_back(new_array);
}
catch(std::bad_alloc& x) {
free(new_array);
return false;
}
}
else {
if(!copy_or_move<T>(new_array,new_size)) {
free(new_array);
return false;
}
free(stack[0]);
stack[0] = new_array;
}
p_capacity = new_size;
p_stack_size = new_size;
if(new_size < p_size) p_size = new_size;
return true;
}
/// \brief Attempt to grow vector either to the given minimum size
/// or using the default strategy, i.e. doubling size until the
/// first element in the stack is full and after allocating
/// max_grow elements at a time.
bool grow_vector(size_t minimum_size = 0) {
size_t new_size = minimum_size;
if(!new_size) {
if(p_stack_size == max_grow) return grow_one();
new_size = p_stack_size*2UL;
if(!new_size) new_size = 1UL;
}
if(new_size > max_grow)
#ifdef USE_LIBDIVIDE
new_size = max_grow.n;
#else
new_size = max_grow;
#endif
if(!change_size(new_size)) return false;
while(minimum_size > p_capacity) if(!grow_one()) return false;
return true;
}
/// \brief Add one element to the stack
bool grow_one() {
// maximum number of elements in stack such that p_capacity will not overflow
size_t max_stack_size = std::numeric_limits<size_t>::max() / p_stack_size;
if(stack.size() >= max_stack_size) return false;
T* new_array = (T*)malloc(sizeof(T)*p_stack_size);
if(!new_array) return false;
try {
stack.push_back(new_array);
}
catch(std::bad_alloc& x) {
free(new_array);
return false;
}
p_capacity += p_stack_size;
return true;
}
/// Helper to get internal indices (which stack + position in stack) based on item index.
std::pair<size_t,size_t> get_indices(size_t i) const {
#ifdef USE_LIBDIVIDE
size_t i1 = i / max_grow;
size_t i2 = (i - i1*max_grow);
#else
size_t i1 = i / max_grow;
size_t i2 = i % max_grow;
#endif
return std::pair<size_t,size_t>(i1,i2);
}
/// \brief Helper to get memory address of element at index. Does not check if index is
/// in range, it is undefined behavior to call this function with i >= \ref size().
T* get_addr(size_t i) { auto x = get_indices(i); return stack[x.first] + x.second; }
/// \brief Helper to get memory address of element at index. Does not check if index is
/// in range, it is undefined behavior to call this function with i >= \ref size().
const T* get_addr(size_t i) const { auto x = get_indices(i); return stack[x.first] + x.second; }
/// \brief Helper to get reference of element at index. Does not check if index is
/// in range, it is undefined behavior to call this function with i >= \ref size().
T& get_ref(size_t i) { auto x = get_indices(i); return stack[x.first][x.second]; }
/// \brief Helper to get reference of element at index. Does not check if index is
/// in range, it is undefined behavior to call this function with i >= \ref size().
const T& get_ref(size_t i) const { auto x = get_indices(i); return stack[x.first][x.second]; }
public:
/* types */
typedef T value_type;
typedef size_t size_type;
typedef ssize_t difference_type;
typedef T& reference;
typedef const T& const_reference;
typedef T* pointer;
typedef const T* const_pointer;
/* Constructors */
/** \brief default constructor, creates empty vector, maximum growth is 128k elements */
vector() noexcept : p_size(0),p_capacity(0),p_stack_size(0),max_grow(131072) { }
/** \brief constructor to create vector of given size and potentially set maximum growth size */
explicit vector(size_t count, const T& value = T(), size_t max_grow_ = 131072);
/** \brief contructor from iterators and optionally setting maximum growth size */
template<class It, typename std::enable_if<at_least_input_iterator<It>::value, int>::type = 0>
vector(It first, It last, size_t max_grow_ = 131072);
/** \brief copy and move constructors */
vector(const vector& v);
vector(vector&& v);
/* 5. assignment */
vector& operator = (const vector& v);
vector& operator = (vector&& v);
/* 6. swap */
void swap(vector& v);
/* Destructor */
~vector() {
/* call destructors of existing elements -- these are not allowed to throw an exception! */
if(p_size) resize(0);
for(auto x : stack) free(x);
}
/* Basic access to members */
/// \brief Current size, i.e. the number of elements stored in this vector.
size_t size() const { return p_size; }
/// \brief Current capacity, i.e. the number of elements that can be stored without allocating more memory.
size_t capacity() const { return p_capacity; }
/// \brief Maximum size to avoid overflow when calculating memory size.
size_t max_size() const { return p_max_capacity; }
/// \brief Maximum capacity to avoid overflow when calculating memory size.
size_t max_capacity() const { return p_max_capacity; }
/// \brief Returns true if the vector is empty.
bool empty() const { return p_size == 0; }
/// \brief Get the maximum growth size. Separate arrays are allocated by this amount.
size_t get_stack_array_size() const {
#ifdef USE_LIBDIVIDE
return max_grow.n;
#else
return max_grow;
#endif
}
/* data access functions
* similarly to std::vector, only at() checks bounds, all other versions
* result in undefined behavior if an out of bounds is attempted */
/// \brief Access the ith element. It is undefined behavior to if i >= size()
T& operator[](size_t i) { return get_ref(i); }
/// \brief Access the ith element. It is undefined behavior to if i >= size()
const T& operator[](size_t i) const { return get_ref(i); }
/// \brief Access the ith element with bounds checking, throws an exception if i >= size()
T& at(size_t i) { if(i < p_size) return get_ref(i); throw std::out_of_range("vector::at(): index out of range!\n"); }
/// \brief Access the ith element with bounds checking, throws an exception if i >= size()
const T& at(size_t i) const { if(i < p_size) return get_ref(i); throw std::out_of_range("vector::at(): index out of range!\n"); }
/// \brief Access the first element. It is undefined behavior if this function is called on an empty vector.
T& front() { return stack[0][0]; }
/// \brief Access the first element. It is undefined behavior if this function is called on an empty vector.
const T& front() const { return stack[0][0]; }
/// \brief Access the last element. It is undefined behavior if this function is called on an empty vector.
T& back() { return get_ref(p_size-1); }
/// \brief Access the last element. It is undefined behavior if this function is called on an empty vector.
const T& back() const { return get_ref(p_size-1); }
/* reserve memory */
/// \brief Reserve memory for at least n elements. Returns true if allocation was successfull, false otherwise.
bool reserve_nothrow(size_t n);
/// \brief Reserve memory for at least n elements. Throws an exception if memory allocation is not successful.
void reserve(size_t n) { if(!reserve_nothrow(n)) throw std::bad_alloc(); }
/// \brief Free up unused memory, keeping at least the given new_capacity (if new_capacity > \ref size()).
void shrink_to_fit(size_t new_capacity = 0);
/* insert /create elements at the end of the vector
* versions that throw an exception if out of memory */
/// \brief Insert element at the end of the vector. Can throw an exception if memory allocation fails.
void push_back(const T& x);
/// \brief Insert element at the end of the vector. Can throw an exception if memory allocation fails.
void push_back(T&& x);
/// \brief Construct an element at the end of the vector. Can throw an exception if memory allocation fails.
template<class... Args> T& emplace_back(Args&&... args);
/* versions that return false if out of memory -- note: any exceptions
* from T's (copy / move) constructor are propagated, i.e. still can
* throw an exception if those throw */
/// \brief Insert element at the end of the vector. Does not throw exception, return value indicates if insert was successful.
bool push_back_nothrow(const T& x);
/// \brief Insert element at the end of the vector. Does not throw exception, return value indicates if insert was successful.
bool push_back_nothrow(T&& x);
/// \brief Construct an element at the end of the vector. Does not throw exception, return value indicates if insert was successful.
template<class... Args> bool emplace_back_nothrow(Args&&... args);
/* remove elements -- T's destructor should not throw exception! */
/// \brief Removes all elements; does not free up memory, use \ref shrink_to_fit() for that.
void clear() { while(p_size) pop_back(); }
/// \brief Removes the last element; does not free up memory, use \ref shrink_to_fit() for that.
void pop_back() {
if(p_size) {
--p_size;
get_ref(p_size).~T();
}
}
/// \brief Resize vector. If new size is larger than current size, new elements are default constructed.
/// Does not throw exception on memory allocation error, return value indicates if resize was successful.
bool resize_nothrow(size_t count);
/// \brief Resize vector. If new size is larger than current size, new elements are inserted as copies of x.
/// Does not throw exception on memory allocation error, return value indicates if resize was successful.
bool resize_nothrow(size_t count, const T& x);
/// \brief Resize vector. If new size is larger than current size, new elements are default constructed.
/// Can throw an exception on memory allocation error.
void resize(size_t count) { if(!resize_nothrow(count)) throw std::bad_alloc(); }
/// \brief Resize vector. If new size is larger than current size, new elements are inserted as copies of x.
/// Can throw exception on memory allocation error.
void resize(size_t count, const T& x) { if(!resize_nothrow(count,x)) throw std::bad_alloc(); }
protected:
/// \brief Iterators store a reference to this class and a position
template<bool is_const>
class iterator_base {
public:
typedef std::random_access_iterator_tag iterator_category;
typedef T value_type;
typedef T* pointer;
typedef T& reference;
typedef ssize_t difference_type;
/*
typedef typename _Iterator::iterator_category iterator_category;
typedef typename _Iterator::value_type value_type;
typedef typename _Iterator::difference_type difference_type;
typedef typename _Iterator::pointer pointer;
typedef typename _Iterator::reference reference;
*/
friend class iterator_base<!is_const>;
friend class vector<T,vector_type>;
protected:
typedef typename std::conditional<is_const, const vector, vector>::type vector_type1;
vector_type1* v;
size_t pos;
/* make non-const iterator from const iterator -- only possible from within the vector
template<bool is_const_ = is_const>
iterator_base(const iterator_base<true>& it, typename std::enable_if<is_const_>::type* = 0 ):v(it.v),pos(it.pos) { } */
public:
iterator_base():v(0),pos(0) { }
explicit iterator_base(vector_type1& v_, size_t pos_ = 0):v(&v_),pos(pos_) { }
explicit iterator_base(vector_type1* v_, size_t pos_ = 0):v(v_),pos(pos_) { }
/* any iterator can be copied from non-const iterator;
* this is not explicit so comparison operators can auto-convert */
iterator_base(const iterator_base<false>& it):v(it.v),pos(it.pos) { }
/* only const iterator can be copied from const iterator */
template<bool is_const_ = is_const>
iterator_base(const iterator_base<true>& it, typename std::enable_if<is_const_>::type* = 0 ):v(it.v),pos(it.pos) { }
/// access to values
reference operator * () {
return (*v)[pos];
}
/// read-only access values
pointer operator -> () {
return &((*v)[pos]);
}
/// compare iterators
/** Note: comparing iterators from different vector
* is undefined behavior, it is not explicitely tested */
template<bool is_const2> bool operator == (const iterator_base<is_const2>& i) const { return pos == i.pos; }
/// compare iterators
/** Note: comparing iterators from different map / tree
* is undefined behavior, it is not explicitely tested */
template<bool is_const2> bool operator != (const iterator_base<is_const2>& i) const { return pos != i.pos; }
/// compare iterators
template<bool is_const2> bool operator < (const iterator_base<is_const2>& i) const { return pos < i.pos; }
/// compare iterators
template<bool is_const2> bool operator > (const iterator_base<is_const2>& i) const { return pos > i.pos; }
/// compare iterators
template<bool is_const2> bool operator <= (const iterator_base<is_const2>& i) const { return pos <= i.pos; }
/// compare iterators
template<bool is_const2> bool operator >= (const iterator_base<is_const2>& i) const { return pos >= i.pos; }
/// increment: move to the next stored node
iterator_base& operator ++() { ++pos; return *this; }
/// increment: move to the next stored node
iterator_base operator ++(int) { iterator_base<is_const> i(*this); ++pos; return i; }
/// decrement: move to the previous stored node
iterator_base& operator --() { --pos; return *this; }
/// decrement: move to the previous stored node
iterator_base operator --(int) { iterator_base<is_const> i(*this); --pos; return i; }
/// move forward by the given number of steps
iterator_base& operator +=(ssize_t i) { pos += i; return *this; }
/// move backward
iterator_base& operator -=(ssize_t i) { pos -= i; return *this; }
iterator_base operator +(ssize_t i) const { iterator_base<is_const> it(*this); it += i; return it; }
iterator_base operator -(ssize_t i) const { iterator_base<is_const> it(*this); it -= i; return it; }
/// Calculate the difference between two iterators. This has undefined behavior if the subtraction overflows.
template<bool is_const2> ssize_t operator - (const iterator_base<is_const2>& i) const {
return ((ssize_t)pos) - ((ssize_t)(i.pos));
}
typename std::conditional<is_const, const reference, reference>::type operator [] (ssize_t i) { return (*v)[pos+i]; }
};
/// \brief Helper for the insert functions -- moves elements starting from pos to new_pos,
/// allocating memory if necessary. The caller must ensure that new_pos >= pos and p_size > pos
bool insert_helper(size_t pos, size_t new_pos);
/// \brief Helper to create an iterator based on a position.
iterator_base<false> make_iterator(size_t pos) { return iterator_base<false>(*this,pos); }
/// \brief Helper to make a non-const copy of a const iterator -- only possible if this class is not const.
iterator_base<false> make_iterator(iterator_base<true> pos) { return iterator_base<false>(*this,pos.pos); }
/// \brief Helper to create an iterator based on a position.
iterator_base<true> make_iterator(size_t pos) const { return iterator_base<true>(*this,pos); }
public:
typedef iterator_base<false> iterator;
typedef iterator_base<true> const_iterator;
iterator begin() { return iterator(*this,0); } ///< \brief Iterator to the beginning
const_iterator begin() const { return const_iterator(*this,0); } ///< \brief Iterator to the beginning
const_iterator cbegin() const { return const_iterator(*this,0); } ///< \brief Iterator to the beginning
iterator end() { return iterator(*this,p_size); } ///< \brief Iterator to the end
const_iterator end() const { return const_iterator(*this,p_size); } ///< \brief Iterator to the end
const_iterator cend() const { return const_iterator(*this,p_size); } ///< \brief Iterator to the end
iterator erase(const_iterator pos); ///< \brief Erase element at the given position
iterator erase(const_iterator first, const_iterator last); ///< \brief Erase elements in the given range
/* inserts that do not throw exception when out of memory,
* instead they return whether the insert was successful
* the res iterator is updated to point to the inserted element
* if the insert is successful, otherwise it is not changed */
/** \brief Inserts a copy of x at the given position. Does not throw an
* exception on memory allocation failure, the return value indicates if
* it was successful. The res iterator is updated to point to the inserted
* element if successful, otherwise it is not changed. */
bool insert_nothrow(const_iterator pos, iterator& res, const T& x);
/** \brief Inserts x at the given position. Does not throw an
* exception on memory allocation failure, the return value indicates if
* it was successful. The res iterator is updated to point to the inserted
* element if successful, otherwise it is not changed. */
bool insert_nothrow(const_iterator pos, iterator& res, T&& x);
/** \brief Inserts count copies of x at the given position. Does not throw an
* exception on memory allocation failure, the return value indicates if
* it was successful. The res iterator is updated to point to the inserted
* element if successful, otherwise it is not changed. */
bool insert_nothrow(const_iterator pos, iterator& res, size_t count, const T& x);
/** \brief Inserts the elements in the range [first,last) at pos. Does not throw an
* exception on memory allocation failure, the return value indicates if
* it was successful. The res iterator is updated to point to the inserted
* element if successful, otherwise it is not changed. */
template<class InputIt, typename std::enable_if<at_least_input_iterator<InputIt>::value, int>::type = 0>
bool insert_nothrow(const_iterator pos, iterator& res, InputIt first, InputIt last);
/// \brief Inserts a copy of x at pos. Can throw an exception if out of memory.
iterator insert(const_iterator pos, const T& x) {
iterator res;
if(insert_nothrow(pos,res,x)) return res;
else throw std::bad_alloc();
}
/// \brief Inserts x at pos. Can throw an exception if out of memory.
iterator insert(const_iterator pos, T&& x) {
iterator res;
if(insert_nothrow(pos,res,std::forward<T>(x))) return res;
else throw std::bad_alloc();
}
/// \brief Inserts count copies of x at pos. Can throw an exception if out of memory.
iterator insert(const_iterator pos, size_t count, const T& x) {
iterator res;
if(insert_nothrow(pos,res,count,x)) return res;
else throw std::bad_alloc();
}
/// \brief Inserts the elements in the range [first,last) at pos. Can throw an exception if out of memory.
template<class InputIt, typename std::enable_if<at_least_input_iterator<InputIt>::value, int>::type = 0>
iterator insert(const_iterator pos, InputIt first, InputIt last) {
iterator res;
if(insert_nothrow(pos,res,first,last)) return res;
else throw std::bad_alloc();
}
};
template <class T, template<class> class vector_type>
auto operator + (ssize_t i, const typename vector<T,vector_type>::iterator& it) -> typename vector<T,vector_type>::iterator {
typename vector<T,vector_type>::iterator it2(it);
it2 += i;
return it2;
}
template <class T, template<class> class vector_type>
auto operator + (ssize_t i, const typename vector<T,vector_type>::const_iterator& it) -> typename vector<T,vector_type>::const_iterator {
typename vector<T,vector_type>::const_iterator it2(it);
it2 += i;
return it2;
}
/* Constructors */
template <class T, template<class> class vt>
vector<T,vt>::vector(size_t count, const T& value, size_t max_grow_) :
p_size(0),p_capacity(0),p_stack_size(0),max_grow(max_grow_) {
reserve(count);
for(;p_size < count; ++p_size) new(get_addr(p_size)) T(value);
}
template <class T, template<class> class vt> template<class It,
typename std::enable_if< at_least_input_iterator<It>::value, int>::type >
vector<T,vt>::vector(It first, It last, size_t max_grow_) :
p_size(0),p_capacity(0),p_stack_size(0),max_grow(max_grow_) {
for(; first != last; ++first) push_back(*first);
}
template <class T, template<class> class vt>
vector<T,vt>::vector(const vector<T,vt>& v) : p_size(0),p_capacity(0),p_stack_size(0),max_grow(v.max_grow) {
reserve(v.size());
for(;p_size < v.size(); ++p_size) new(get_addr(p_size)) T(v[p_size]);
}
template <class T, template<class> class vt>
void vector<T,vt>::swap(vector<T,vt>& v) {
using std::swap;
swap(stack, v.stack);
swap(p_size, v.p_size);
swap(p_capacity, v.p_capacity);
swap(p_stack_size, v.p_stack_size);
swap(max_grow, v.max_grow);
}
template <class T, template<class> class vt>
vector<T,vt>::vector(vector<T,vt>&& v) : p_size(0),p_capacity(0),p_stack_size(0),max_grow(v.max_grow) {
swap(v);
}
template <class T, template<class> class vt>
vector<T,vt>& vector<T,vt>::operator = (const vector<T,vt>& v) {
resize(0);
shrink_to_fit(v.size());
reserve(v.size());
for(;p_size < v.size(); ++p_size) new(get_addr(p_size)) T(v[p_size]);
return *this;
}
template <class T, template<class> class vt>
vector<T,vt>& vector<T,vt>::operator = (vector<T,vt>&& v) {
resize(0);
for(auto x : stack) free(x);
stack.resize(0);
swap(v);
}
template <class T, template<class> class vt>
bool vector<T,vt>::reserve_nothrow(size_t n) {
if(n > p_max_capacity) return false;
if(n <= p_capacity) return true;
return grow_vector(n);
}
template <class T, template<class> class vt>
void vector<T,vt>::shrink_to_fit(size_t new_capacity) {
if(new_capacity < p_size) new_capacity = p_size;
if(new_capacity > p_capacity) return;
if(new_capacity > max_grow) {
#ifdef USE_LIBDIVIDE
size_t tmp = new_capacity / max_grow;
if(new_capacity - tmp*max_grow) new_capacity += max_grow;
#else
if(new_capacity % max_grow) new_capacity += max_grow;
#endif
while(p_capacity > new_capacity) {
free(stack.back());
stack.pop_back();
p_capacity -= max_grow;
}
}
else {
size_t new_stack_size = (new_capacity > 0)?1:0;
for(size_t i = new_stack_size; i < stack.size(); i++) free(stack[i]);
stack.resize(new_stack_size);
if(new_capacity) change_size(new_capacity);
}
stack.shrink_to_fit();
}
/* insert /create elements at the end of the vector */
template <class T, template<class> class vt>
void vector<T,vt>::push_back(const T& x) {
if(!push_back_nothrow(x)) throw std::bad_alloc();
}
template <class T, template<class> class vt>
void vector<T,vt>::push_back(T&& x) {
if(!push_back_nothrow(std::forward<T>(x))) throw std::bad_alloc();
}
template<class T, template<class> class vt> template<class... Args>
T& vector<T,vt>::emplace_back(Args&&... args) {
if(!emplace_back_nothrow(std::forward<Args>(args)...)) throw std::bad_alloc();
return back();
}
template <class T, template<class> class vt>
bool vector<T,vt>::push_back_nothrow(const T& x) {
if(p_size == p_capacity) if(!grow_vector()) return false;
new(get_addr(p_size)) T(x); /* copy constructor -- might still throw an exception */
p_size++;
return true;
}
template <class T, template<class> class vt>
bool vector<T,vt>::push_back_nothrow(T&& x) {
if(p_size == p_capacity) if(!grow_vector()) return false;
new(get_addr(p_size)) T(std::forward<T>(x)); /* move constructor -- might throw an exception */
p_size++;
return true;
}
template<class T, template<class> class vt> template<class... Args>
bool vector<T,vt>::emplace_back_nothrow(Args&&... args) {
if(p_size == p_capacity) if(!grow_vector()) return false;
new(get_addr(p_size)) T(std::forward<Args>(args)...); /* constructor -- might throw an exception */
p_size++;
return true;
}
template <class T, template<class> class vt>
bool vector<T,vt>::resize_nothrow(size_t count) {
if(count == p_size) return true;
if(!count) { clear(); return true; }
if(count < p_size) {
do { pop_back(); } while(p_size > count);
return true;
}
/* here count > p_size */
if(count > p_capacity) if(!grow_vector(count)) return false;
for(; p_size < count; p_size++) new(get_addr(p_size)) T();
return true;
}
template <class T, template<class> class vt>
bool vector<T,vt>::resize_nothrow(size_t count, const T& x) {
if(count == p_size) return true;
if(!count) { clear(); return true; }
if(count < p_size) {
do { pop_back(); } while(p_size > count);
return true;
}
/* here count > p_size */
if(count > p_capacity) if(!grow_vector(count)) return false;
for(; p_size < count; p_size++) new(get_addr(p_size)) T(x);
return true;
}
template <class T, template<class> class vt>
typename vector<T,vt>::iterator vector<T,vt>::erase(vector<T,vt>::const_iterator pos) {
if(pos.pos >= p_size) throw std::out_of_range("vector::erase(): iterator out of bounds!\n");
for(size_t p2 = pos.pos; p2 + 1 < p_size; p2++) get_ref(p2) = std::move(get_ref(p2+1));
p_size--;
get_ref(p_size).~T();
return make_iterator(pos.pos);
}
template <class T, template<class> class vt>
typename vector<T,vt>::iterator vector<T,vt>::erase(vector<T,vt>::const_iterator first, vector<T,vt>::const_iterator last) {
if(first.pos >= p_size) throw std::out_of_range("vector::erase(): iterator out of bounds!\n");
ssize_t dist = last - first;
if(!dist) return make_iterator(first);
if(dist < 0) throw std::out_of_range("vector::erase(): invalid iterators!\n");
for(size_t p2 = first.pos; p2 + dist < p_size; p2++) get_ref(p2) = std::move(get_ref(p2+dist));
size_t new_size = p_size - dist;
for(;p_size > new_size; --p_size) get_ref(p_size-1).~T();
return make_iterator(first);
}
/* move elements to new position from given position
* requires that new_pos >= pos and p_size > pos */
template <class T, template<class> class vt>
bool vector<T,vt>::insert_helper(size_t pos, size_t new_pos) {
size_t diff = new_pos - pos;
if(p_size > p_max_capacity - diff || !reserve_nothrow(p_size + diff)) return false;
size_t remaining = p_size - pos;
for(size_t i = 0; i < diff; i++) {
size_t j = p_size + i;
new(get_addr(j)) T(std::move(get_ref( p_size - diff + i )));
}
for(size_t i = p_size - diff; i > pos; i--) get_ref(i - 1UL + diff) = std::move(get_ref(i - 1UL));
p_size += diff;
return true;
}
template <class T, template<class> class vt>
bool vector<T,vt>::insert_nothrow(vector<T,vt>::const_iterator pos, vector<T,vt>::iterator& res, const T& x) {
res = make_iterator(pos);
if(pos == cend()) return push_back_nothrow(x);
if(!insert_helper(pos.pos,pos.pos+1)) return false;
get_ref(pos.pos) = x;
return true;
}
template <class T, template<class> class vt>
bool vector<T,vt>::insert_nothrow(vector<T,vt>::const_iterator pos, vector<T,vt>::iterator& res, T&& x) {
res = make_iterator(pos);
if(pos == cend()) return push_back_nothrow(std::forward<T>(x));
if(!insert_helper(pos.pos,pos.pos+1)) return false;
get_ref(pos.pos) = std::move(x);
return true;
}
template <class T, template<class> class vt>
bool vector<T,vt>::insert_nothrow(vector<T,vt>::const_iterator pos, vector<T,vt>::iterator& res, size_t count, const T& x) {
res = make_iterator(pos);
if(pos == cend()) return resize_nothrow(p_size + count, x);
if(!insert_helper(pos.pos,pos.pos+count)) return false;
for(size_t i = 0; i < count; i++) get_ref(pos.pos + i) = x;
return true;
}
template <class T, template<class> class vt> template<class InputIt,
typename std::enable_if<at_least_input_iterator<InputIt>::value, int>::type >
bool vector<T,vt>::insert_nothrow(vector<T,vt>::const_iterator pos, vector<T,vt>::iterator& res, InputIt first, InputIt last) {
res = make_iterator(pos);
if(first != last) {
if CONSTEXPR(at_least_forward_iterator<InputIt>::value) {
ssize_t dist = std::distance(first,last);
if(dist < 0) return false;
if(pos == cend()) {
if(!reserve_nothrow(p_size + dist)) return false;
for(; first != last; ++first) push_back(*first);
return true;
}
if(!insert_helper(pos.pos,pos.pos+dist)) return false;
for(size_t i = pos.pos; first != last; ++first, i++) get_ref(i) = *first;
}
else {
vector<T,vt>::iterator tmp;
for(size_t i = pos.pos; first != last; ++first, i++)
if(!insert_nothrow(vector<T,vt>::iterator(*this,i),tmp,*first)) return false;
}
}
return true;
}
} // namespace stacked_vector
#undef CONSTEXPR
#endif