-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain_t5_moe.py
199 lines (159 loc) · 7.13 KB
/
pretrain_t5_moe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Pretrain T5"""
from functools import partial
import torch
from megatron import (
get_args,
get_timers,
print_rank_0
)
from megatron.core import tensor_parallel
from megatron.core.enums import ModelType
from megatron.core import mpu, tensor_parallel
from megatron.data.dataset_utils import build_train_valid_test_datasets
from megatron.model import T5Model
from megatron.training import pretrain
from megatron.utils import average_losses_across_data_parallel_group
from megatron.arguments import core_transformer_config_from_args
import deepspeed
from deepspeed.runtime.utils import see_memory_usage
from deepspeed.accelerator.real_accelerator import get_accelerator
import os
import subprocess
"""
Pipeline parallelism for T5
===========================
T5 is a model architecture with both encoder and decoder blocks.
Consequently, pipeline parallelism is implemented slightly differently
compared to architectures like GPT and BERT.
In particular, when pipeline_model_parallel_world_size > 1, each stage
either executes an encoder block or a decoder block. The
--pipeline-model-parallel-split-rank argument controls the rank at which
the split happens: all ranks lower than this argument execute the
encoder block, and all ranks equal to or higher than this argument value
execute the decoder block.
In the encoder section of the model, only one tensor is sent downstream:
the intermediate encoder_hidden_state. In the decoder section of the
model, two tensors are sent downstream in the forward pass: the fully
computed encoder_hidden_state, and the intermediate decoder_hidden_state.
In particular, these are the shapes of the tensors sent between
different workers:
If rank is in decoder section:
intermediate decoder_hidden_state (pre-transpose),
complete encoder_hidden_state (post-transpose).
If rank is at boundary between encoder and decoder sections:
complete encoder_hidden_state (post-transpose).
If rank is in encoder section:
intermediate encoder_hidden_state (pre-transpose).
Additionally, we have code in the backward_step function in schedules.py
to accumulate the encoder_hidden_state gradient across skip connections
(encoder_hidden_state fed in as input to each layer in the decoder).
"""
def model_provider(pre_process=True, post_process=True,
add_encoder=True, add_decoder=True):
"""Build the model."""
print_rank_0('building T5 model ...')
see_memory_usage(f"Before Building Model", force=True)
args = get_args()
config = core_transformer_config_from_args(args)
with deepspeed.zero.Init(data_parallel_group=mpu.get_data_parallel_group(),
remote_device=None if args.remote_device == 'none' else args.remote_device,
config_dict_or_path=args.deepspeed_config,
enabled=args.zero_stage == 3,
mpu=mpu):
model = T5Model(config=config,
num_tokentypes=0,
parallel_output=True,
pre_process=pre_process,
post_process=post_process,
add_encoder=add_encoder,
add_decoder=add_decoder)
see_memory_usage(f"After Building Model", force=True)
return model
def get_batch(data_iterator):
"""Build the batch."""
keys = ['text_enc', 'text_dec', 'labels', 'loss_mask',
'enc_mask', 'dec_mask', 'enc_dec_mask']
datatype = torch.int64
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
data_b = tensor_parallel.broadcast_data(keys, data, datatype)
# Unpack.
tokens_enc = data_b['text_enc'].long()
tokens_dec = data_b['text_dec'].long()
labels = data_b['labels'].long()
loss_mask = data_b['loss_mask'].float()
enc_mask = (data_b['enc_mask'] < 0.5)
dec_mask = (data_b['dec_mask'] < 0.5)
enc_dec_mask = (data_b['enc_dec_mask'] < 0.5)
return tokens_enc, tokens_dec, loss_mask, labels, \
enc_mask, dec_mask, enc_dec_mask
def loss_func(loss_mask, dec_moe_loss, enc_moe_loss, output_tensor):
lm_loss_ = output_tensor.float()
lm_loss = torch.sum(
lm_loss_.view(-1) * loss_mask.reshape(-1)) / loss_mask.sum()
loss = lm_loss + dec_moe_loss + enc_moe_loss
averaged_losses = average_losses_across_data_parallel_group([lm_loss])
return loss, {'lm loss': averaged_losses[0],'dec moe loss': dec_moe_loss, 'enc moe loss': enc_moe_loss}
def forward_step(data_iterator, model):
"""Forward step."""
args = get_args()
timers = get_timers()
# Get the batch.
timers('batch generator', log_level=2).start()
tokens_enc, tokens_dec, loss_mask, lm_labels, enc_mask, dec_mask, enc_dec_mask \
= get_batch(data_iterator)
timers('batch generator').stop()
# Forward model lm_labels
# Modifying the code below for MoE, copied logic from pretrain_gpt.py
# output_tensor = model(tokens_enc,
# tokens_dec,
# enc_mask,
# dec_mask,
# enc_dec_mask,
# tokentype_ids=None,
# lm_labels=lm_labels)
output_tensor, dec_moe_losses, enc_moe_losses = model(tokens_enc,
tokens_dec,
enc_mask,
dec_mask,
enc_dec_mask,
tokentype_ids=None,
lm_labels=lm_labels)
# Did not introduce MoS loss yet
dec_moe_loss = sum_loss(dec_moe_losses, args.moe_loss_coeff)
enc_moe_loss = sum_loss(enc_moe_losses, args.moe_loss_coeff)
# print('LOLA: t5 output_tensor from model:', output_tensor)
return output_tensor, partial(loss_func, loss_mask, dec_moe_loss, enc_moe_loss)
def sum_loss(losses, coeff=1):
losses = []
for loss_val in losses:
if loss_val is not None:
losses.append(loss_val)
tot_loss = sum(losses) * coeff
return tot_loss
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build train, valid, and test datasets."""
args = get_args()
print_rank_0('> building train, validation, and test datasets '
'for T5 ...')
train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
data_prefix=args.data_path,
data_impl=args.data_impl,
splits_string=args.split,
train_valid_test_num_samples=train_val_test_num_samples,
max_seq_length=args.encoder_seq_length,
max_seq_length_dec=args.decoder_seq_length,
masked_lm_prob=args.mask_prob,
short_seq_prob=args.short_seq_prob,
seed=args.seed,
skip_warmup=(not args.mmap_warmup),
dataset_type='t5')
print_rank_0("> finished creating T5 datasets ...")
return train_ds, valid_ds, test_ds
if __name__ == "__main__":
pretrain(train_valid_test_datasets_provider, model_provider, ModelType.encoder_and_decoder,
forward_step, args_defaults={'tokenizer_type': 'BertWordPieceLowerCase'})