-
Notifications
You must be signed in to change notification settings - Fork 3
/
keras_predict.py
299 lines (267 loc) · 8.22 KB
/
keras_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# Copyright 2017 Dhvani Patel
from keras.models import Sequential
from keras.layers import Dense, Dropout, Input, Embedding, LSTM
from keras.models import Model
from keras import optimizers
from keras.callbacks import ModelCheckpoint, CSVLogger, EarlyStopping
from keras.models import model_from_yaml
from Token import Token
from py_mutations_hub import perform
import numpy
import os
def getInputTestDat():
one_hot_good, one_hot_bad_ins, one_hot_bad_del, one_hot_bad_sub, _, _, _, _, _ = perform(2001)
while(one_hot_good == 1):
one_hot_good, one_hot_bad_ins, one_hot_bad_del, one_hot_bad_sub, _, _, _, _, _ = perform(2001)
#print type(one_hot_good)
#print one_hot_good
windowInd = 0
fileInd = 2001
batchInd = 1
#count = 0
while fileInd <= 2500: # 462540
#while windowInd < int(len(insArr)/10):
sizes = [len(one_hot_good), len(one_hot_bad_ins),len(one_hot_bad_del),len(one_hot_bad_sub)]
minSize = min(float(siz) for siz in sizes) # min of a generator
#print "file"
#print fileInd
#print minSize
#print windowInd
#print int((int(minSize) / 10))
while windowInd < int((int(minSize) / 10)):
#print windowInd
#print "WINDOW"
batchInd = 1
#print len(one_hot_good)
#print len(one_hot_bad_ins)
#print len(one_hot_bad_del)
#print len(one_hot_bad_sub)
toPassOne = []
for x in range(10):
y = x + windowInd
if y < len(one_hot_good):
toPassOne.append(one_hot_good[y])
toPassTwo = []
for x in range(10):
y = x + windowInd
if y < len(one_hot_bad_ins):
toPassTwo.append(one_hot_bad_ins[y])
toPassThree = []
for x in range(10):
y = x + windowInd
if y < len(one_hot_bad_del):
toPassThree.append(one_hot_bad_del[y])
toPassFour = []
for x in range(10):
y = x + windowInd
if y < len(one_hot_bad_sub):
toPassFour.append(one_hot_bad_sub[y])
#print "TEST"
#print numpy.array(toPassOne).astype(int)[0]
#print len(toPass)
#print len(toPassOne)
#print len(toPassTwo)
#print len(toPassThree)
#print len(toPassFour)
#toPass = np.array((,, ))
#toPass = np.concatenate((numpy.array(toPassOne).astype(int), numpy.array(toPassTwo).astype(int), numpy.array(toPassThree).astype(int)), axis=0)
#a = numpy.array(toPass).astype(int)
#print toPass.shape
#toPass = []
print "RADHA"
while(batchInd % 4 != 0):
toPass = []
#print "BATCH IND"
#print batchInd
if(batchInd == 1):
toPass = toPassOne[:]
print "BATCH IND"
elif(batchInd == 2):
toPass = toPassTwo[:]
print "BATCH IND T"
elif(batchInd == 3):
toPass = toPassThree[:]
print "BATCH IND TT"
elif(batchInd == 4):
print "here"
toPass = toPassTwo[:]
a = numpy.array(toPass).astype(int)
#print a.shape
#count+=1
#print "COUNT"
#print count
#print b.shape
print len(a)
yield a
batchInd += 1
#print numpy.array(toPass).shape
#print "mine too"
#a = numpy.array(toPass)
#print a.shape
#yield a
windowInd += 1
#else:
#print "NEXT FILE"
#print "DONE BRO"
old_one_hot_good = one_hot_good[:]
old_one_hot_bad_ins = one_hot_bad_ins[:]
old_one_hot_bad_del = one_hot_bad_del[:]
old_one_hot_bad_sub = one_hot_bad_sub[:]
numGoodLeft = len(one_hot_good) % 10
numBadInsLeft = len(one_hot_bad_ins) % 10
numBadDelLeft = len(one_hot_bad_del) % 10
numBadSubLeft = len(one_hot_bad_sub) % 10
fileInd += 1
windowInd = 0
one_hot_good, one_hot_bad_ins, one_hot_bad_del, one_hot_bad_sub, _, _, _, _, _ = perform(fileInd)
while(one_hot_good == 1):
fileInd+=1
one_hot_good, one_hot_bad_ins, one_hot_bad_del, one_hot_bad_sub, _, _, _, _, _ = perform(fileInd)
for p in range(numGoodLeft):
one_hot_good.insert(p, old_one_hot_good[len(old_one_hot_good)-numGoodLeft+p])
for p in range(numBadInsLeft):
one_hot_bad_ins.insert(p, old_one_hot_bad_ins[len(old_one_hot_bad_ins)-numBadInsLeft+p])
for p in range(numBadDelLeft):
one_hot_bad_del.insert(p, old_one_hot_bad_del[len(old_one_hot_bad_del)-numBadDelLeft+p])
for p in range(numBadSubLeft):
one_hot_bad_sub.insert(p, old_one_hot_bad_sub[len(old_one_hot_bad_sub)-numBadSubLeft+p])
def getInputTestTen():
one_hot_good, one_hot_bad_ins, one_hot_bad_del, one_hot_bad_sub, _, _, _, _, passInsErrorInd = perform(2037)
fileInd = 2037
batchInd = 1
if True:
if True:
#print passInsErrorInd
print "ERROR IND"
#print one_hot_good
print len(one_hot_bad_del)
print len(one_hot_good)
print len(one_hot_bad_ins)
toPassOne = []
for x in range(10):
y = x
if y < len(one_hot_good):
toPassOne.append(one_hot_good[y])
toPassTwo = []
for x in range(10):
y = passInsErrorInd - x
if y < len(one_hot_bad_ins):
toPassTwo.append(one_hot_bad_ins[y])
toPassThree = []
for x in range(10):
y = x
if y < len(one_hot_bad_del):
toPassThree.append(one_hot_bad_del[y])
toPassFour = []
for x in range(10):
y = x
if y < len(one_hot_bad_sub):
toPassFour.append(one_hot_bad_sub[y])
#print len(toPass)
print len(toPassOne)
print len(toPassTwo)
print len(toPassThree)
#print len(toPassFour)
#toPass = np.array((toPassOne, toPassTwo, toPassThree, toPassFour))
#print toPass.shape
toPass = toPassTwo[:]
a = numpy.array(toPass).astype(int)
print a.shape
return a
#print numpy.array(toPass).shape
#print "mine too"
batchInd += 1
windowInd += 1
else:
#print "NEXT FILE"
old_one_hot_good = one_hot_good[:]
old_one_hot_bad_ins = one_hot_bad_ins[:]
old_one_hot_bad_del = one_hot_bad_del[:]
old_one_hot_bad_sub = one_hot_bad_sub[:]
numGoodLeft = len(one_hot_good) % 10
numBadInsLeft = len(one_hot_bad_ins) % 10
numBadDelLeft = len(one_hot_bad_del) % 10
numBadSubLeft = len(one_hot_bad_sub) % 10
fileInd += 1
windowInd = 0
one_hot_good, one_hot_bad_ins, one_hot_bad_del, one_hot_bad_sub, _, _, _, _ = perform(fileInd)
while(one_hot_good == None):
fileInd+=1
one_hot_good, one_hot_bad_ins, one_hot_bad_del, one_hot_bad_sub, _, _, _, _ = perform(fileInd)
for p in range(numGoodLeft):
one_hot_good.insert(p, old_one_hot_good[len(old_one_hot_good)-numGoodLeft+p])
for p in range(numBadInsLeft):
one_hot_bad_ins.insert(p, old_one_hot_bad_ins[len(old_one_hot_bad_ins)-numBadInsLeft+p])
for p in range(numBadDelLeft):
one_hot_bad_del.insert(p, old_one_hot_bad_del[len(old_one_hot_bad_del)-numBadDelLeft+p])
for p in range(numBadSubLeft):
one_hot_bad_sub.insert(p, old_one_hot_bad_sub[len(old_one_hot_bad_sub)-numBadSubLeft+p])
def predictData():
# load YAML and create model
yaml_file = open('model_l.yaml', 'r')
loaded_model_yaml = yaml_file.read()
yaml_file.close()
loaded_model = model_from_yaml(loaded_model_yaml)
# load weights into new model
loaded_model.load_weights("model_l.h5")
print("Loaded model from disk")
# evaluate loaded model on test data
opt = optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.5)
loaded_model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
#genIn = getInputTestTen()
#outPredict = loaded_model.predict(genIn, batch_size=15, verbose=1)
# 1000 -> 10 000
# 100 -> 1000
# 300 -> 3000
# TIMES 10
#genIn = getInputTestDat()
#for x in genIn:
# print x
# sys.exit()
outPredict = loaded_model.predict_generator(getInputTestDat(), 9000, 3, verbose=1)
print "PREDICT"
print outPredict
sums = []
inds = []
sum = 0.0
radInd = 0
for x in outPredict:
#print x
sum = 0.0
for y in x:
sum = sum + y
sums.append(sum)
for x in range(len(list(outPredict))):
inds.append(list(outPredict[x]).index(max(outPredict[x])))
print max(outPredict[0])
print list(outPredict[0]).index(max(outPredict[0]))
print "MAX"
countGood = -1
countIns = -1
countDel = -1
iterInd = 0
for b in inds:
if iterInd == 3:
iterInd = 0
if iterInd == 0:
if b == 0:
countGood += 1
if iterInd == 1:
if b == 3:
countIns += 1
if iterInd == 2:
if b == 2:
countDel += 1
iterInd += 1
print b
print len(inds)
print countGood
print countIns
print countDel
#print "SUM"
#for x in sums:
# print x
#score = loaded_model.evaluate(X, Y, verbose=0)
#print("%s: %.2f%%" % (loaded_model.metrics_names[1], score[1]*100))
if __name__ == '__main__':
predictData()