-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDSKPsolve.m
94 lines (86 loc) · 2.93 KB
/
DSKPsolve.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
function [popt x] = DSKPsolve(numk,W,w,mu,v,c, displayInfo)
% Stochastic Knapsack Solver via Dynamic Programming
% max P[ r*x >= c ] via
% min (x - mu*x)/sqrt(v*x)
% inputs
if nargin == 0
% use default values if none given
numk = 3; % number of item types
W = 10; % total bag weight limit
c = 26; % satisfiable return threshold
w = [1 2 3]; % item weight by type
mu= [2 5 8]; % mean of item return by type
v = [1 3 6]; % variance of item return by type
displayInfo = true;
elseif nargin < 6
error('not enough input arguments');
elseif nargin == 6
displayInfo = true;
end
%muPerW = mu ./ w; % mean return per weight by type
vPerW = v ./ w; % variance per weight by type
wlow = min(w); % lowest possible weight (highest is W)
vlow = min(v);
vhigh = max( vPerW * W ); % conservative upper bound on v, if we put in
%only items of the type with highest variance per weight
f = DPmap();
k = DPmap();
f(0,0) = 0;
% compute k(w,v) and f(w,v) for each feasible (w,v)
for wcur = wlow:W
for vcur = vlow:vhigh;
% Backward recursion step
% select item that results in greatest increase to mu, from current
% weight w and variance v, backward
% Original version
% kbest = 1;
% fbest = f(wcur-w(1), vcur-v(1)) + mu(1);
% for kcur = 2:numk
% fcur = f(wcur-w(kcur), vcur-v(kcur)) + mu(kcur);
% if fcur > fbest
% fbest = fcur;
% kbest = kcur;
% end
% end
% Optimized version
fvals = arrayfun(@(kcur) f(wcur-w(kcur), vcur-v(kcur)) + mu(kcur), 1:numk);
[fbest, kbest] = max(fvals);
k(wcur,vcur) = kbest;
f(wcur,vcur) = fbest;
end
end
% Phase 2
% determine optimal objective value rho(w) for each feasible w
% (take the v that gives the lowest rho for each w)
% rho = (c-f(w,v))/sqrt(v)
% rho maps w -> objective value
% (actual probability is 1-normcdf(rho))
rho = containers.Map('KeyType','int32','ValueType','double');
% k1 maps w -> the kind with the best v for optimal rho
k1 = containers.Map('KeyType','int32','ValueType','int32');
for wcur = wlow:W
rhovals = arrayfun(@(vcur) (c-f(wcur,vcur))/sqrt(vcur), vlow:vhigh);
[rhobest, vbest] = min(rhovals);
rho(wcur) = rhobest;
k1(wcur) = k(wcur,vbest);
end
% Phase 3 (Adapted)
% which weight gives the lowest rho?
% we expect W yields the lowest rho, but it may be a different w'
[rhoopt, wopt] = minMap1(rho);
popt = 1-normcdf(rhoopt);
% now construct x backward from wopt downto 0
x = zeros(1,numk);
wcur = wopt;
while wcur ~= 0
x(k1(wcur)) = x(k1(wcur)) + 1;
wcur = wcur - w(k1(wcur));
end
if displayInfo
fprintf('Optimal w* = %d; rho* = %.2f; p* = %.2f\n', ...
wopt, rhoopt, popt);
fprintf('Bag mean = %d; Bag variance = %d\n',sum(x.*mu),sum(x.*v));
fprintf('Fill your knapsack with these items:\n');
disp(x);
end
end % function