-
Notifications
You must be signed in to change notification settings - Fork 27
/
setup.py
124 lines (110 loc) · 3.46 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import glob
import os
import os.path as osp
from itertools import product
import torch
from setuptools import find_packages, setup
from torch.utils.cpp_extension import (
CUDA_HOME,
BuildExtension,
CUDAExtension,
)
__version__ = '0.1.1'
URL = 'https://github.com/dgSPARSE/dgSPARSE-Lib'
WITH_CUDA = False
if torch.cuda.is_available():
WITH_CUDA = CUDA_HOME is not None
suffices = ['cuda'] if WITH_CUDA else ['cpu']
if os.getenv('FORCE_CUDA', '0') == '1':
suffices = ['cuda']
print(f'Building with CUDA: {WITH_CUDA}, ', 'CUDA_HOME:', CUDA_HOME)
def get_extensions():
extensions = []
extensions_dir = osp.join('src')
main_files = glob.glob(osp.join(extensions_dir, '*.cpp'))
main_files = [path for path in main_files]
for main, suffix in product(main_files, suffices):
define_macros = [('WITH_PYTHON', None)]
undef_macros = []
libraries = []
extra_compile_args = {'cxx': ['-O2']}
extra_link_args = [
'-s',
'-lm',
'-ldl',
]
extra_link_args += ['-lcusparse'] if suffix == 'cuda' else []
if suffix == 'cuda':
define_macros += [('WITH_CUDA', None)]
nvcc_flags = os.getenv('NVCC_FLAGS', '')
nvcc_flags = [] if nvcc_flags == '' else nvcc_flags.split(' ')
nvcc_flags += ['-O2']
extra_compile_args['nvcc'] = nvcc_flags
name = main.split(os.sep)[-1][:-4]
sources = [main]
path = osp.join(extensions_dir, 'cuda', f'{name}_cuda.cu')
if suffix == 'cuda' and osp.exists(path):
sources += [path]
Extension = CUDAExtension
if name == 'spconv': # ignore spconv
continue
if name == 'version':
extension = Extension(
'dgsparse._C',
sources,
# include_dirs=[extensions_dir],
define_macros=define_macros,
undef_macros=undef_macros,
extra_compile_args=extra_compile_args,
extra_link_args=extra_link_args,
libraries=libraries,
)
else:
extension = Extension(
f'dgsparse._{name}_{suffix}',
sources,
# include_dirs=[extensions_dir],
define_macros=define_macros,
undef_macros=undef_macros,
extra_compile_args=extra_compile_args,
extra_link_args=extra_link_args,
libraries=libraries,
)
extensions += [extension]
return extensions
install_requires = [
'scipy',
# "mkl-devel", # mkl library
# "mkl-service", # to support "import mkl"
]
test_requires = [
'pytest',
'pytest-cov',
]
setup(
name='dgsparse-lib',
version=__version__,
description=(' PyTorch-Based Fast and Efficient Processing \
for Various Machine Learning Applications with Diverse Sparsity'),
author='dgsparse team',
author_email='[email protected]',
url=URL,
download_url=f'{URL}/archive/{__version__}.tar.gz',
keywords=[
'pytorch',
'sparse',
'autograd',
],
python_requires='>=3.7',
install_requires=install_requires,
extras_require={
'test': test_requires,
},
ext_modules=get_extensions(),
cmdclass={
'build_ext':
BuildExtension.with_options(no_python_abi_suffix=True, use_ninja=False)
},
packages=find_packages(),
include_package_data=True,
)