-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcartesianproduct.go
215 lines (191 loc) · 5.52 KB
/
cartesianproduct.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
package ranges
type cartesianProduct2Result[A, B any] struct {
r1 ForwardRange[A]
r2 ForwardRange[B]
r2Save ForwardRange[B]
}
func (cpr *cartesianProduct2Result[A, B]) Empty() bool {
return cpr.r2Save.Empty() &&
cpr.r1.Empty()
}
func (cpr *cartesianProduct2Result[A, B]) Front() Pair[A, B] {
return MakePair(
cpr.r1.Front(),
cpr.r2Save.Front(),
)
}
func (cpr *cartesianProduct2Result[A, B]) PopFront() {
cpr.r2Save.PopFront()
if cpr.r2Save.Empty() {
cpr.r1.PopFront()
if !cpr.r1.Empty() {
cpr.r2Save = cpr.r2.Save()
}
}
}
func (cpr *cartesianProduct2Result[A, B]) Save() ForwardRange[Pair[A, B]] {
return &cartesianProduct2Result[A, B]{
cpr.r1.Save(),
cpr.r2.Save(),
cpr.r2Save.Save(),
}
}
// CartesianProduct2 produces the cartersian product r1 X r2
func CartesianProduct2[A, B any](
r1 ForwardRange[A],
r2 ForwardRange[B],
) ForwardRange[Pair[A, B]] {
return &cartesianProduct2Result[A, B]{
r1,
r2,
r2.Save(),
}
}
// CartesianProduct3 produces the cartersian product r1 X r2 X r3
func CartesianProduct3[A, B, C any](
r1 ForwardRange[A],
r2 ForwardRange[B],
r3 ForwardRange[C],
) ForwardRange[Triplet[A, B, C]] {
product2 := CartesianProduct2(r2, r3)
product3 := CartesianProduct2(r1, product2)
return MapF(
product3,
func(x Pair[A, Pair[B, C]]) Triplet[A, B, C] {
return MakeTriplet(x.A, x.B.A, x.B.B)
},
)
}
// CartesianProduct4 produces the cartersian product r1 X r2 X r3 X r4
func CartesianProduct4[A, B, C, D any](
r1 ForwardRange[A],
r2 ForwardRange[B],
r3 ForwardRange[C],
r4 ForwardRange[D],
) ForwardRange[Quartet[A, B, C, D]] {
product3 := CartesianProduct3(r2, r3, r4)
product4 := CartesianProduct2(r1, product3)
return MapF(
product4,
func(x Pair[A, Triplet[B, C, D]]) Quartet[A, B, C, D] {
return MakeQuartet(x.A, x.B.A, x.B.B, x.B.C)
},
)
}
// CartesianProduct5 produces the cartersian product r1 X r2 X r3 X r4 X r5
func CartesianProduct5[A, B, C, D, E any](
r1 ForwardRange[A],
r2 ForwardRange[B],
r3 ForwardRange[C],
r4 ForwardRange[D],
r5 ForwardRange[E],
) ForwardRange[Quintet[A, B, C, D, E]] {
product4 := CartesianProduct4(r2, r3, r4, r5)
product5 := CartesianProduct2(r1, product4)
return MapF(
product5,
func(x Pair[A, Quartet[B, C, D, E]]) Quintet[A, B, C, D, E] {
return MakeQuintet(x.A, x.B.A, x.B.B, x.B.C, x.B.D)
},
)
}
// CartesianProduct6 produces the cartersian product r1 X r2 X r3 X r4 X r5 X r6
func CartesianProduct6[A, B, C, D, E, F any](
r1 ForwardRange[A],
r2 ForwardRange[B],
r3 ForwardRange[C],
r4 ForwardRange[D],
r5 ForwardRange[E],
r6 ForwardRange[F],
) ForwardRange[Sextet[A, B, C, D, E, F]] {
product5 := CartesianProduct5(r2, r3, r4, r5, r6)
product6 := CartesianProduct2(r1, product5)
return MapF(
product6,
func(x Pair[A, Quintet[B, C, D, E, F]]) Sextet[A, B, C, D, E, F] {
return MakeSextet(x.A, x.B.A, x.B.B, x.B.C, x.B.D, x.B.E)
},
)
}
// CartesianProduct7 produces the cartersian product r1 X r2 X r3 X r4 X r5 X r6 x r7
func CartesianProduct7[A, B, C, D, E, F, G any](
r1 ForwardRange[A],
r2 ForwardRange[B],
r3 ForwardRange[C],
r4 ForwardRange[D],
r5 ForwardRange[E],
r6 ForwardRange[F],
r7 ForwardRange[G],
) ForwardRange[Septet[A, B, C, D, E, F, G]] {
product6 := CartesianProduct6(r2, r3, r4, r5, r6, r7)
product7 := CartesianProduct2(r1, product6)
return MapF(
product7,
func(x Pair[A, Sextet[B, C, D, E, F, G]]) Septet[A, B, C, D, E, F, G] {
return MakeSeptet(x.A, x.B.A, x.B.B, x.B.C, x.B.D, x.B.E, x.B.F)
},
)
}
// CartesianProduct8 produces the cartersian product r1 X r2 X r3 X r4 X r5 X r6 x r7 x r8
func CartesianProduct8[A, B, C, D, E, F, G, H any](
r1 ForwardRange[A],
r2 ForwardRange[B],
r3 ForwardRange[C],
r4 ForwardRange[D],
r5 ForwardRange[E],
r6 ForwardRange[F],
r7 ForwardRange[G],
r8 ForwardRange[H],
) ForwardRange[Octet[A, B, C, D, E, F, G, H]] {
product7 := CartesianProduct7(r2, r3, r4, r5, r6, r7, r8)
product8 := CartesianProduct2(r1, product7)
return MapF(
product8,
func(x Pair[A, Septet[B, C, D, E, F, G, H]]) Octet[A, B, C, D, E, F, G, H] {
return MakeOctet(x.A, x.B.A, x.B.B, x.B.C, x.B.D, x.B.E, x.B.F, x.B.G)
},
)
}
// CartesianProduct9 produces the cartersian product r1 X r2 X r3 X r4 X r5 X r6 x r7 x r8 x r9
func CartesianProduct9[A, B, C, D, E, F, G, H, I any](
r1 ForwardRange[A],
r2 ForwardRange[B],
r3 ForwardRange[C],
r4 ForwardRange[D],
r5 ForwardRange[E],
r6 ForwardRange[F],
r7 ForwardRange[G],
r8 ForwardRange[H],
r9 ForwardRange[I],
) ForwardRange[Ennead[A, B, C, D, E, F, G, H, I]] {
product8 := CartesianProduct8(r2, r3, r4, r5, r6, r7, r8, r9)
product9 := CartesianProduct2(r1, product8)
return MapF(
product9,
func(x Pair[A, Octet[B, C, D, E, F, G, H, I]]) Ennead[A, B, C, D, E, F, G, H, I] {
return MakeEnnead(x.A, x.B.A, x.B.B, x.B.C, x.B.D, x.B.E, x.B.F, x.B.G, x.B.H)
},
)
}
// CartesianProduct10 produces the cartersian product r1 X r2 X r3 X r4 X r5 X r6 x r7 x r8 x r9 x r10
func CartesianProduct10[A, B, C, D, E, F, G, H, I, J any](
r1 ForwardRange[A],
r2 ForwardRange[B],
r3 ForwardRange[C],
r4 ForwardRange[D],
r5 ForwardRange[E],
r6 ForwardRange[F],
r7 ForwardRange[G],
r8 ForwardRange[H],
r9 ForwardRange[I],
r10 ForwardRange[J],
) ForwardRange[Decade[A, B, C, D, E, F, G, H, I, J]] {
product9 := CartesianProduct9(r2, r3, r4, r5, r6, r7, r8, r9, r10)
product10 := CartesianProduct2(r1, product9)
return MapF(
product10,
func(x Pair[A, Ennead[B, C, D, E, F, G, H, I, J]]) Decade[A, B, C, D, E, F, G, H, I, J] {
return MakeDecade(x.A, x.B.A, x.B.B, x.B.C, x.B.D, x.B.E, x.B.F, x.B.G, x.B.H, x.B.I)
},
)
}