-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path00_introduction_tensorflow.py
133 lines (99 loc) · 4.33 KB
/
00_introduction_tensorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Introduction to Tensorflow
# Tensorflow is a Python library designed for numerical computations, it is
# linked with data flow graphs as a smart representation of computation process
# (nodes are operations, edges are data arrays).
# Tensorflow is very similar to Numpy regarding the numerical operations. In
# this way we will handle here some constants and variables of different shapes
# (scalars, vectors, matrices). Some Tensorflow specificities will arise as well.
import tensorflow as tf
# Constant and basic operations
# Operations on scalar
a = tf.constant(2, name="a")
b = tf.constant(3, name="b")
add = tf.add(a, b, name="addition")
mul = tf.multiply(a, b, name="multiplication")
sess = tf.Session()
a_, b_, x, y = sess.run([a, b, add, mul])
print("{0} + {1} = {2}\n{0} * {1} = {3}".format(a_, b_, x, y))
sess.close()
# Operations on matrices
m1 = tf.constant([[2,2]], name="m1")
m2 = tf.constant([[0,1],[2,3]], name="m2")
madd = tf.add(m1, m2, name="matrix_addition")
mmul = tf.matmul(m1, m2, name="matrix_multiplication")
with tf.Session() as sess:
a_, b_, x, y = sess.run([m1, m2, madd, mmul])
print("{0}\n+\n{1}\n=\n{2}\n\n{0}\n*\n{1}\n=\n{3}".format(a_, b_, x, y))
# Particular matrices
mzeros = tf.zeros([2,3], tf.int32)
mzeros_temp = tf.zeros_like(m2)
mones = tf.ones([2,3], tf.int32)
meights = tf.fill([2,3], 8)
with tf.Session() as sess:
mzeros_, mzeros_t_, mones_, meights_ = sess.run([mzeros, mzeros_temp, mones, meights])
print("""Matrice nulle:\n{0}\nMatrice nulle basée sur un
modèle:\n{1}\nMatrice de '1':\n{2}\nMatrice de '8':\n{3}""".format(mzeros_,
mzeros_t_,
mones_,
meights_))
# Random generator
mu = 10
sigma = 1
mrand = tf.random_normal([3,3], mean=mu, stddev=sigma)
with tf.Session() as sess:
print("Matrice normale ({0},{1}):\n{2}".format(mu, sigma, sess.run(mrand)))
# Variables
v1 = tf.Variable(2, name="scalar")
v2 = tf.Variable([3.0, 4.0], name="vector")
v3 = tf.Variable(tf.zeros([2,6]), name="zeromatrix")
init = tf.variables_initializer([v1, v3], name="init_az")
with tf.Session() as sess:
sess.run(init)
print(v1)
print(v1.eval())
print(v3.eval())
sess.run(v2.initializer)
print(v2.eval())
new_v2 = v2.assign([30.0, 40.0])
with tf.Session() as sess:
sess.run(v2.initializer)
print(v2.eval())
sess.run(new_v2)
print(v2.eval())
# Placeholders
# Placeholders are a kind of variables that must be fed during a Tensorflow
# session. They are the ideal structure to insert input data into computation
# process.
# Placeholder definition
p1 = tf.placeholder(tf.float32, shape=[1,3], name="placeholder1")
p2 = tf.placeholder(tf.float32, shape=[3,1], name="placeholder2")
# Operation on placeholders to make an output
pmult = tf.matmul(p1, p2) + tf.ones(shape=[1,1])
# Executinon of the code within a session
with tf.Session() as sess:
placeholder_mult = sess.run(pmult, feed_dict={p1:[[1,2,3]], p2:[[10],[20],[30]]})
print("Sum of placeholder matrices:\n{}".format(placeholder_mult))
# Graph visualisation
# A dummy sequence of operations is designed, to elaborate a small example graph.
import numpy as np
p3 = tf.placeholder(tf.float32, shape=(), name="placeholder3")
p4 = tf.placeholder(tf.float32, shape=(), name="placeholder4")
padd = tf.add(pmult, p3)
pequals = tf.equal(padd, p4)
panswer = tf.reshape(pequals, [])
with tf.Session() as sess:
writer = tf.summary.FileWriter('../graphs/intro', sess.graph)
answer = sess.run(panswer, feed_dict={p1: [[1, 2, 3]], p2: [[10], [20], [30]], p3: 1000, p4: 1141})
print("Does the fourth value equal the result obtained with the three others? {}".format(answer))
# Then the graph can be showed onto the local server, with the proper port. The
# shell command is the following one:
# tensorboard --logdir '../graphs/intro' --port 6006
# TD;LR
# Tensorflow:
# - allows to handle constants and variables of different shapes
# - represents operations in a graph
# - separates the graph conception from the numerical operations
# - needs the opening of a dedicated session to apply operations within a
# pre-built graph
# - and its tensorboard command show the graph and every tensorflow objects on
# the local server