-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtree.c
133 lines (119 loc) · 2.93 KB
/
tree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
/* Based on Data Structures and Algorithm Analysis in C (Second Edition)
* by Mark Allen Weiss.
*
* Modified by Minlan Yu.
*/
#include <stdlib.h>
#include <stdio.h>
#include "tree.h"
#include "util.h"
#ifdef ENABLE_DMALLOC
#include <dmalloc.h>
#endif //ENABLE_DMALLOC
struct TreeNode * pmin;
SearchTree TreeMakeEmpty( SearchTree T ) {
if( T != NULL ) {
TreeMakeEmpty( T->Left );
TreeMakeEmpty( T->Right );
free( T );
pmin = NULL;
}
return NULL;
}
Position TreeFind( int value, SearchTree T ) {
if( T == NULL ) return NULL;
if( value < T->Element.l1num ) {
return TreeFind( value, T->Left );
} else {
if( value > T->Element.l1num ) {
return TreeFind(value, T->Right );
} else {
return T;
}
}
}
Position TreeFindMin( SearchTree T ) {
if (pmin != NULL) return pmin;
if( T == NULL ) {
return NULL;
} else {
if( T->Left == NULL ) {
return T;
} else {
return TreeFindMin( T->Left );
}
}
}
Position TreeFindMax( SearchTree T ) {
if( T != NULL ) {
while( T->Right != NULL ) {
T = T->Right;
}
}
return T;
}
SearchTree TreeInsert( TreeElementType X, SearchTree T ) {
if (pmin!= NULL && X.l1num < pmin->Element.l1num) pmin = NULL;
if( T == NULL ) {
/* Create and return a one-node tree */
T = malloc( sizeof( struct TreeNode ) );
if( T == NULL ) {
perror( "Out of space!!!" );
} else {
T->Element = X;
T->Left = T->Right = NULL;
}
} else {
if( X.l1num < T->Element.l1num ) {
T->Left = TreeInsert( X, T->Left );
} else {
if( X.l1num > T->Element.l1num ) {
T->Right = TreeInsert( X, T->Right );
}
/* Else X is in the tree already; we'll do nothing */
}
}
return T; /* Do not forget this line!! */
}
SearchTree TreeDelete( TreeElementType X, SearchTree T ) {
Position TmpCell;
if (pmin != NULL && X.l1num == pmin->Element.l1num) pmin = NULL;
if( T == NULL ) {
perror( "Element not found" );
} else {
if( X.l1num < T->Element.l1num ) {
/* Go left */
T->Left = TreeDelete( X, T->Left );
} else {
if( X.l1num > T->Element.l1num ) {
/* Go right */
T->Right = TreeDelete( X, T->Right );
} else {
/* Found element to be deleted */
if( T->Left && T->Right ) {
/* Two children */
/* Replace with smallest in right subtree */
TmpCell = TreeFindMin( T->Right );
T->Element = TmpCell->Element;
T->Right = TreeDelete( T->Element, T->Right );
} else {
/* One or zero children */
TmpCell = T;
if( T->Left == NULL ) {
/* Also handles 0 children */
T = T->Right;
} else {
if( T->Right == NULL ) {
T = T->Left;
}
}
free( TmpCell );
}
}
}
}
return T;
}
TreeElementType Retrieve( Position P ) {
return P->Element;
}