forked from ml-explore/mlx-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllava.py
179 lines (146 loc) · 6.06 KB
/
llava.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Copyright © 2024 Apple Inc.
import glob
import inspect
import json
from dataclasses import dataclass
from pathlib import Path
from typing import Optional
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from huggingface_hub import snapshot_download
from language import LanguageModel, TextConfig
from vision import VisionConfig, VisionModel
@dataclass
class LlaVAConfig:
text_config: TextConfig
vision_config: VisionConfig
ignore_index: int = -100
image_token_index: int = 32000
vision_feature_select_strategy: str = "default"
vision_feature_layer: int = -2
vocab_size: int = 32000
@classmethod
def from_dict(cls, params):
return cls(
**{
k: v
for k, v in params.items()
if k in inspect.signature(cls).parameters
}
)
class LlavaMultiModalProjector(nn.Module):
def __init__(self, config: LlaVAConfig):
super().__init__()
self.linear_1 = nn.Linear(
config.vision_config.hidden_size, config.text_config.hidden_size, bias=True
)
self.gelu = nn.GELU()
self.linear_2 = nn.Linear(
config.text_config.hidden_size, config.text_config.hidden_size, bias=True
)
def __call__(self, x: mx.array) -> mx.array:
x = self.linear_1(x)
x = self.gelu(x)
x = self.linear_2(x)
return x
class LlavaModel(nn.Module):
def __init__(self, config: LlaVAConfig):
self.config = config
self.vision_tower = VisionModel(config.vision_config)
self.language_model = LanguageModel(config.text_config)
self.multi_modal_projector = LlavaMultiModalProjector(config)
self.vision_feature_layer = config.vision_feature_layer
self.vision_feature_select_strategy = config.vision_feature_select_strategy
def get_input_embeddings(
self,
input_ids: Optional[mx.array] = None,
pixel_values: Optional[mx.array] = None,
):
if pixel_values is None:
return self.language_model(input_ids)
# Get the input embeddings from the language model
inputs_embeds = self.language_model.model.embed_tokens(input_ids)
# Get the ouptut hidden states from the vision model
*_, hidden_states = self.vision_tower(
pixel_values.transpose(0, 2, 3, 1), output_hidden_states=True
)
# Select the hidden states from the desired layer
selected_image_feature = hidden_states[self.vision_feature_layer]
if self.vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif self.vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
else:
raise ValueError(
"Unexpected feature selection strategy: "
f"{self.vision_feature_select_strategy}"
)
# Pass image features through the multi-modal projector
image_features = self.multi_modal_projector(selected_image_feature)
# Insert special image tokens in the input_ids
final_inputs_embeds = self._merge_input_ids_with_image_features(
image_features, inputs_embeds, input_ids
)
return final_inputs_embeds
def _merge_input_ids_with_image_features(
self, image_features, inputs_embeds, input_ids
):
image_token_index = self.config.image_token_index
num_images, num_image_patches, embed_dim = image_features.shape
# Positions of <image> tokens in input_ids, assuming batch size is 1
image_positions = np.where(input_ids[0] == image_token_index)[0].tolist()
if len(image_positions) != num_images:
raise ValueError(
f"The number of image tokens ({len(image_positions)}) does not "
f" match the number of image inputs ({num_images})."
)
text_segments = []
start_idx = 0
for position in image_positions:
text_segments.append(inputs_embeds[:, start_idx:position])
start_idx = position + 1
image_embeddings = mx.split(image_features, image_features.shape[0])
final_embeddings = [v for p in zip(text_segments, image_embeddings) for v in p]
final_embeddings += [inputs_embeds[:, start_idx:]]
# Create a final embedding of shape
# (1, num_image_patches*num_images + sequence_len, embed_dim)
return mx.concatenate(final_embeddings, axis=1)
def __call__(self, input_ids: mx.array, pixel_values: mx.array, cache=None):
input_embddings = self.get_input_embeddings(input_ids, pixel_values)
logits, cache = self.language_model(
input_ids, cache=cache, inputs_embeds=input_embddings
)
return logits, cache
@staticmethod
def from_pretrained(path_or_hf_repo: str):
path = Path(path_or_hf_repo)
if not path.exists():
path = Path(
snapshot_download(
repo_id=path_or_hf_repo,
allow_patterns=[
"*.json",
"*.safetensors",
"*.py",
"tokenizer.model",
"*.tiktoken",
],
)
)
with open(path / "config.json", "r") as f:
model_config = json.load(f)
model_config = LlaVAConfig.from_dict(model_config)
model_config.vision_config = VisionConfig.from_dict(model_config.vision_config)
model_config.text_config = TextConfig.from_dict(model_config.text_config)
model = LlavaModel(model_config)
weight_files = glob.glob(str(path / "*.safetensors"))
if not weight_files:
raise FileNotFoundError(f"No safetensors found in {path}")
weights = {}
for wf in weight_files:
weights.update(mx.load(wf))
weights = VisionModel.sanitize(weights)
weights = LanguageModel.sanitize(weights)
model.load_weights(list(weights.items()))
return model