Skip to content

Latest commit

 

History

History
155 lines (119 loc) · 5.2 KB

cf-conventions.adoc

File metadata and controls

155 lines (119 loc) · 5.2 KB

version.adoc = NetCDF Climate and Forecast (CF) Metadata Conventions Brian Eaton; Jonathan Gregory; Bob Drach; Karl Taylor; Steve Hankin; John Caron; Rich Signell; Phil Bentley; Greg Rappa; Heinke Höck; Alison Pamment; Martin Juckes; Martin Raspaud; Randy Horne; Jon Blower; Timothy Whiteaker; David Blodgett; Charlie Zender; Daniel Lee; David Hassell; Alan D. Snow; Tobias Kölling; Dave Allured; Aleksandar Jelenak; Anders Meier Soerensen; Lucile Gaultier; Sylvain Herlédan; Fernando Manzano; Lars Bärring; Christopher Barker; Sadie Bartholomew :revnumber: {current-version} :revdate: {docprodtime} :doctype: book :pdf-folio-placement: physical :sectanchors: :toc: macro :toclevels: 3

Climate and Forecast Conventions version {current-version-as-attribute} {doi-text}

cc zero This document is dedicated to the public domain following the Creative Commons Zero v1.0 Universal Deed.

The Climate and Forecasting Conventions website https://cfconventions.org/ contains additional resources and provides further information.

DON’T use the following reference to cite this version of the document, as it is only shown as a draft:
Eaton, B., Gregory, J., Drach, B., Taylor, K., Hankin, S. et al. (2024). NetCDF Climate and Forecast (CF) Metadata Conventions ({current-version-as-attribute}). CF Community. {doi-link}


About the authors

Original Authors
  • Brian Eaton, NCAR

  • Jonathan Gregory, University of Reading and UK Met Office Hadley Centre

  • Bob Drach, PCMDI, LLNL

  • Karl Taylor, PCMDI, LLNL

  • Steve Hankin, PMEL, NOAA

Additional Authors
  • John Caron, UCAR

  • Rich Signell, USGS

  • Phil Bentley, UK Met Office Hadley Centre

  • Greg Rappa, MIT

  • Heinke Höck, DKRZ

  • Alison Pamment, BADC

  • Martin Juckes, BADC

  • Martin Raspaud, SMHI

  • Randy Horne, Excalibur Laboratories, Inc., Melbourne Beach Florida USA

  • Jon Blower, University of Reading

  • Timothy Whiteaker, University of Texas

  • David Blodgett, USGS

  • Charlie Zender, University of California, Irvine

  • Daniel Lee, EUMETSAT

  • David Hassell, NCAS and University of Reading

  • Alan D. Snow, Corteva Agriscience

  • Tobias Kölling, MPIM

  • Dave Allured, CIRES/University of Colorado/NOAA/PSL

  • Aleksandar Jelenak, HDF Group

  • Anders Meier Soerensen, EUMETSAT

  • Lucile Gaultier, OceanDataLab

  • Sylvain Herlédan, OceanDataLab

  • Fernando Manzano, Puertos del Estado

  • Lars Bärring, SMHI

  • Christopher Barker, NOAA

  • Sadie Bartholomew, NCAS and University of Reading

Many others have contributed to the development of CF through their participation in discussions about proposed changes.

Abstract

This document describes the CF conventions for climate and forecast metadata designed to promote the processing and sharing of files created with the netCDF Application Programmer Interface [NetCDF]. The conventions define metadata that provide a definitive description of what the data in each variable represents, and of the spatial and temporal properties of the data. This enables users of data from different sources to decide which quantities are comparable, and facilitates building applications with powerful extraction, regridding, and display capabilities.

The CF conventions generalize and extend the COARDS conventions [COARDS]. The extensions include metadata that provides a precise definition of each variable via specification of a standard name, describes the vertical locations corresponding to dimensionless vertical coordinate values, and provides the spatial coordinates of non-rectilinear gridded data. Since climate and forecast data are often not simply representative of points in space/time, other extensions provide for the description of coordinate intervals, multidimensional cells and climatological time coordinates, and indicate how a data value is representative of an interval or cell. This standard also relaxes the COARDS constraints on dimension order and specifies methods for reducing the size of datasets.