-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathada_hessian.py
140 lines (108 loc) · 6.08 KB
/
ada_hessian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
class AdaHessian(torch.optim.Optimizer):
"""
Implements the AdaHessian algorithm from "ADAHESSIAN: An Adaptive Second OrderOptimizer for Machine Learning"
Arguments:
params (iterable) -- iterable of parameters to optimize or dicts defining parameter groups
lr (float, optional) -- learning rate (default: 0.1)
betas ((float, float), optional) -- coefficients used for computing running averages of gradient and the squared hessian trace (default: (0.9, 0.999))
eps (float, optional) -- term added to the denominator to improve numerical stability (default: 1e-8)
weight_decay (float, optional) -- weight decay (L2 penalty) (default: 0.0)
hessian_power (float, optional) -- exponent of the hessian trace (default: 1.0)
update_each (int, optional) -- compute the hessian trace approximation only after *this* number of steps (to save time) (default: 1)
n_samples (int, optional) -- how many times to sample `z` for the approximation of the hessian trace (default: 1)
"""
def __init__(self, params, lr=0.1, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0,
hessian_power=1.0, update_each=1, n_samples=1, average_conv_kernel=False):
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps}")
if not 0.0 <= betas[0] < 1.0:
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
if not 0.0 <= betas[1] < 1.0:
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
if not 0.0 <= hessian_power <= 1.0:
raise ValueError(f"Invalid Hessian power value: {hessian_power}")
self.n_samples = n_samples
self.update_each = update_each
self.average_conv_kernel = average_conv_kernel
# use a separate generator that deterministically generates the same `z`s across all GPUs in case of distributed training
self.generator = torch.Generator().manual_seed(2147483647)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, hessian_power=hessian_power)
super(AdaHessian, self).__init__(params, defaults)
for p in self.get_params():
p.hess = 0.0
self.state[p]["hessian step"] = 0
def get_params(self):
"""
Gets all parameters in all param_groups with gradients
"""
return (p for group in self.param_groups for p in group['params'] if p.requires_grad)
def zero_hessian(self):
"""
Zeros out the accumalated hessian traces.
"""
for p in self.get_params():
if not isinstance(p.hess, float) and self.state[p]["hessian step"] % self.update_each == 0:
p.hess.zero_()
@torch.no_grad()
def set_hessian(self):
"""
Computes the Hutchinson approximation of the hessian trace and accumulates it for each trainable parameter.
"""
params = []
for p in filter(lambda p: p.grad is not None, self.get_params()):
if self.state[p]["hessian step"] % self.update_each == 0: # compute the trace only each `update_each` step
params.append(p)
self.state[p]["hessian step"] += 1
if len(params) == 0:
return
if self.generator.device != params[0].device: # hackish way of casting the generator to the right device
self.generator = torch.Generator(params[0].device).manual_seed(2147483647)
grads = [p.grad for p in params]
for i in range(self.n_samples):
zs = [torch.randint(0, 2, p.size(), generator=self.generator, device=p.device) * 2.0 - 1.0 for p in params] # Rademacher distribution {-1.0, 1.0}
h_zs = torch.autograd.grad(grads, params, grad_outputs=zs, only_inputs=True, retain_graph=i < self.n_samples - 1)
for h_z, z, p in zip(h_zs, zs, params):
p.hess += h_z * z / self.n_samples # approximate the expected values of z*(H@z)
@torch.no_grad()
def step(self, closure=None):
"""
Performs a single optimization step.
Arguments:
closure (callable, optional) -- a closure that reevaluates the model and returns the loss (default: None)
"""
loss = None
if closure is not None:
loss = closure()
self.zero_hessian()
self.set_hessian()
for group in self.param_groups:
for p in group['params']:
if p.grad is None or p.hess is None:
continue
if self.average_conv_kernel and p.dim() == 4:
p.hess = torch.abs(p.hess).mean(dim=[2, 3], keepdim=True).expand_as(p.hess).clone()
# Perform correct stepweight decay as in AdamW
p.mul_(1 - group['lr'] * group['weight_decay'])
state = self.state[p]
# State initialization
if len(state) == 1:
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of gradient values
state['exp_hessian_diag_sq'] = torch.zeros_like(p.data) # Exponential moving average of Hessian diagonal square values
exp_avg, exp_hessian_diag_sq = state['exp_avg'], state['exp_hessian_diag_sq']
beta1, beta2 = group['betas']
state['step'] += 1
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(p.grad, alpha=1 - beta1)
exp_hessian_diag_sq.mul_(beta2).addcmul_(p.hess, p.hess, value=1 - beta2)
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
k = group['hessian_power']
denom = (exp_hessian_diag_sq / bias_correction2).pow_(k / 2).add_(group['eps'])
# make update
step_size = group['lr'] / bias_correction1
p.addcdiv_(exp_avg, denom, value=-step_size)
return loss