-
Notifications
You must be signed in to change notification settings - Fork 244
/
Copy pathIntroToTextAnalytics_Part3.R
172 lines (111 loc) · 4.64 KB
/
IntroToTextAnalytics_Part3.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#
# Copyright 2017 Data Science Dojo
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
# This R source code file corresponds to video 3 of the Data Science
# Dojo YouTube series "Introduction to Text Analytics with R" located
# at the following URL:
# https://www.youtube.com/watch?v=CQsyVDxK7_g
#
# Install all required packages.
install.packages(c("ggplot2", "e1071", "caret", "quanteda",
"irlba", "randomForest"))
# Load up the .CSV data and explore in RStudio.
spam.raw <- read.csv("spam.csv", stringsAsFactors = FALSE, fileEncoding = "UTF-16")
View(spam.raw)
# Clean up the data frame and view our handiwork.
spam.raw <- spam.raw[, 1:2]
names(spam.raw) <- c("Label", "Text")
View(spam.raw)
# Check data to see if there are missing values.
length(which(!complete.cases(spam.raw)))
# Convert our class label into a factor.
spam.raw$Label <- as.factor(spam.raw$Label)
# The first step, as always, is to explore the data.
# First, let's take a look at distibution of the class labels (i.e., ham vs. spam).
prop.table(table(spam.raw$Label))
# Next up, let's get a feel for the distribution of text lengths of the SMS
# messages by adding a new feature for the length of each message.
spam.raw$TextLength <- nchar(spam.raw$Text)
summary(spam.raw$TextLength)
# Visualize distribution with ggplot2, adding segmentation for ham/spam.
library(ggplot2)
ggplot(spam.raw, aes(x = TextLength, fill = Label)) +
theme_bw() +
geom_histogram(binwidth = 5) +
labs(y = "Text Count", x = "Length of Text",
title = "Distribution of Text Lengths with Class Labels")
# At a minimum we need to split our data into a training set and a
# test set. In a true project we would want to use a three-way split
# of training, validation, and test.
#
# As we know that our data has non-trivial class imbalance, we'll
# use the mighty caret package to create a randomg train/test split
# that ensures the correct ham/spam class label proportions (i.e.,
# we'll use caret for a random stratified split).
library(caret)
help(package = "caret")
# Use caret to create a 70%/30% stratified split. Set the random
# seed for reproducibility.
set.seed(32984)
indexes <- createDataPartition(spam.raw$Label, times = 1,
p = 0.7, list = FALSE)
train <- spam.raw[indexes,]
test <- spam.raw[-indexes,]
# Verify proportions.
prop.table(table(train$Label))
prop.table(table(test$Label))
# Text analytics requires a lot of data exploration, data pre-processing
# and data wrangling. Let's explore some examples.
# HTML-escaped ampersand character.
train$Text[21]
# HTML-escaped '<' and '>' characters. Also note that Mallika Sherawat
# is an actual person, but we will ignore the implications of this for
# this introductory tutorial.
train$Text[38]
# A URL.
train$Text[357]
# There are many packages in the R ecosystem for performing text
# analytics. One of the newer packages in quanteda. The quanteda
# package has many useful functions for quickly and easily working
# with text data.
library(quanteda)
help(package = "quanteda")
# Tokenize SMS text messages.
train.tokens <- tokens(train$Text, what = "word",
remove_numbers = TRUE, remove_punct = TRUE,
remove_symbols = TRUE, remove_hyphens = TRUE)
# Take a look at a specific SMS message and see how it transforms.
train.tokens[[357]]
# Lower case the tokens.
train.tokens <- tokens_tolower(train.tokens)
train.tokens[[357]]
# Use quanteda's built-in stopword list for English.
# NOTE - You should always inspect stopword lists for applicability to
# your problem/domain.
train.tokens <- tokens_select(train.tokens, stopwords(),
selection = "remove")
train.tokens[[357]]
# Perform stemming on the tokens.
train.tokens <- tokens_wordstem(train.tokens, language = "english")
train.tokens[[357]]
# Create our first bag-of-words model.
train.tokens.dfm <- dfm(train.tokens, tolower = FALSE)
# Transform to a matrix and inspect.
train.tokens.matrix <- as.matrix(train.tokens.dfm)
View(train.tokens.matrix[1:20, 1:100])
dim(train.tokens.matrix)
# Investigate the effects of stemming.
colnames(train.tokens.matrix)[1:50]