-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathtrain.py
69 lines (53 loc) · 1.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# train image segmentation model.
import os
os.environ["KERAS_BACKEND"] = "theano"
os.environ["THEANO_FLAGS"] = "mode=FAST_RUN, device=cuda, floatX=float32, optimizer=fast_compile"
import csv
import numpy as np
from keras.optimizers import SGD
from keras.callbacks import CSVLogger, EarlyStopping
from model import model
from data import load_data
validation = 0.2
epochs = 10
learning_rate = 0.001
momentum = 0.9
m = model()
print("Loaded model.")
print(m.summary())
#dev
#plot_model(model, to_file="/tmp/x.png")
opt = SGD(lr=learning_rate, momentum=momentum, decay=0.0005, nesterov=False)
m.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"])
print("Model compiled.")
images, labels = load_data()
#images, labels = images[:100], labels[:100] # dev
# shuffle dataset.
total = len(images)
p = np.random.permutation(total)
images, labels = images[p], labels[p]
# 80/20 split.
holdback = int(validation*total)
images_val, labels_val = images[-holdback:], labels[-holdback:]
images, labels = images[:-holdback], labels[:-holdback]
print("Loaded {} instances.".format(total))
print("Training = {}, Validation = {}".format(len(images), len(images_val)))
# callbacks broken in latest keras version.
#call = []
#call.append(CSVLogger("train.log", separator=",", append=False))
#call.append(EarlyStopping(monitor="val_loss", min_delta=0.001, patience=10, verbose=1, mode="min"))
hist = m.fit(x=images, y=labels, validation_data=(images_val, labels_val), batch_size=16, epochs=epochs, verbose=1)
print("Training complete.")
print("Saving weights.")
m.save_weights("weights.hdf5")
print(hist.history)
print("Saving training history.")
# {"a": [1,2,3], "b": [4,5,6]} ->
# [[1,4], [2,5], [3,6]]
hist_dict = hist.history
headers = ["loss", "val_loss", "val_acc", "acc"]
train_hist = [list(x) for x in zip(*[hist_dict[k] for k in headers])]
with open("training_log.csv", "w") as f:
csv_writer = csv.writer(f, delimiter=",")
csv_writer.writerow(headers)
csv_writer.writerows(train_hist)