-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.js
117 lines (101 loc) · 3.93 KB
/
generate.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import OpenAI from "openai";
const openai = new OpenAI();
const prompt = "You are a helpful assistant. You answer all questions briefly, and only provide factual information, without followup questions.";
let chatHistory = [{ role: "system", content: prompt }];
async function getVespaResults(query) {
const fetch = require('node-fetch');
let baseurl = "http://localhost:8080/search/?yql="
let yql = encodeURIComponent("select * from sources * where userQuery() or ({targetHits: 10}nearestNeighbor(auto_embedding, embedding)) limit 5") +
"&input.query(embedding)=" + encodeURIComponent("embed(e5, \"query:"+query+"\")") +
"&query="+encodeURIComponent(query) +
"&ranking=combined";
console.log(baseurl + yql);
let vespaResponse = await (await fetch(baseurl + yql)).json();
let children = vespaResponse.root.children || [];
let results = [];
var anyRelevant = false;
if(children.length > 0) {
var context = "Here is some factual information you have found by searching, which you can use to answer the question:";
for (const result of children) {
console.log("Retrieved result:", result.id, "with relevance score", result.relevance);
if(result.relevance > 0.66) {
anyRelevant = true;
context = context + "\n" + result.fields.text;
}
}
context = context + "\n" + "Now write a helpful and factual response to this:"
results.push({role:"system", content:context})
}
if(anyRelevant) {
return results;
} else {
return [];
}
}
export default async function handler(req, res) {
const { method } = req;
switch (method) {
case "POST":
if (req.query.endpoint === "chat") {
// Handle POST to /api/generate?endpoint=chat
const content = req.body.message;
chatHistory.push({ role: "user", content: content });
res.status(200).json({ success: true });
} else if (req.query.endpoint === "reset") {
// Handle POST to /api/generate?endpoint=reset
chatHistory = [
{ role: "system", content: prompt },
];
res.status(200).json({ success: true });
} else {
res.status(404).json({ error: "Not Found" });
}
break;
case "GET":
if (req.query.endpoint === "history") {
res.status(200).json(chatHistory);
} else if (req.query.endpoint === "stream") {
// Set headers for Server-Sent Events
res.setHeader("Content-Type", "text/event-stream");
res.setHeader("Cache-Control", "no-cache");
res.setHeader("Connection", "keep-alive");
try {
let userMessage = chatHistory[chatHistory.length-1];
let vespaResults = await getVespaResults(userMessage.content);
for (const vespaResult of vespaResults) {
chatHistory.splice(chatHistory.length-1, 0, vespaResult);
}
console.log(chatHistory);
const stream = await openai.beta.chat.completions.stream({
model: "llama2",
messages: chatHistory,
stream: true,
});
for await (const chunk of stream) {
const message = chunk.choices[0]?.delta?.content || "";
res.write(`data: ${JSON.stringify(message)}\n\n`);
}
// After the stream ends, get the final chat completion
const chatCompletion = await stream.finalChatCompletion();
} catch (error) {
res.write(
"event: error\ndata: " +
JSON.stringify({ message: "Stream encountered an error" }) +
"\n\n"
);
}
// When the client closes the connection, we stop the stream
return new Promise((resolve) => {
req.on("close", () => {
resolve();
});
});
} else {
res.status(404).json({ error: "Not Found" });
}
break;
default:
res.setHeader("Allow", ["GET", "POST"]);
res.status(405).end(`Method ${method} Not Allowed`);
}
}