-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecorateParapsilosisMSAlabel.py
74 lines (57 loc) · 2.23 KB
/
decorateParapsilosisMSAlabel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/usr/bin/python
import sys
import os.path
import argparse
import re
import csv
from io import StringIO
import pandas as pd
import numpy
#import statistics
## Function: A closure for file extension checking
def ext_check(expected_ext, openner):
def extension(filename):
if not filename.lower().endswith(expected_ext):
raise ValueError()
return openner(filename)
return extension
## Function: Filename extractor from filepath
def getIsolateID(filePathString):
splitStr = re.split(pattern='/', string=filePathString)
fileNameIdx = len(splitStr) - 1
isolateString = re.split(pattern='\.', string=splitStr[fileNameIdx])
if(len(isolateString[0]) < 10):
isolateString = re.split(pattern='\.', string=splitStr[0])
return isolateString[0]
parser = argparse.ArgumentParser(description='Create a subset from SNP matrix based upon input list', usage="decorateMainMSAlabel.py filepath1/MSA.fasta filepath2/isolateMetadata.tsv > output.tsv")
## read MSA file in fasta format
parser.add_argument("file1", type=ext_check('.fasta', argparse.FileType('r')))
## read CSID and metadata table file
parser.add_argument("file2", type=ext_check('.tsv', argparse.FileType('r')))
args = parser.parse_args()
## create a filehandle for fasta MSA
msaHandle = open(args.file1.name)
## create a table from CSID metadata using pandas
df = pd.read_csv(open(args.file2.name), sep='\t')
idx = 0
tempIDs = df['tempid'].tolist()
## loop for appending CSID to tempid
for line in msaHandle:
if(re.search(r'^>', string=line)):
#print all but first character of fasta header line and chomp newline
searchID = line[1:len(line)].rstrip()
findID = searchID.split('_')
#print(findID[0])
j = 0
for item in tempIDs:
if(item == findID[0]):
print(">" + item + "_" + str(df.at[j, 'stateID']) + "_" + str(df.at[j, 'facilityID_autocolour']) + "_" + str(df.at[j, 'patientID_autocolour']) )
j = j + 1
elif(re.search(r'^[A|T|G|C|N]', string=line, flags=re.IGNORECASE)):
print(line)
idx = idx + 1
### Exploring pandas dataframe access operations
#print(list(df.columns.values))
#print(df[:4])
#print(df.at[1, 'csid'])
#print(len(df['tempid'].tolist()))