forked from CrossmodalGroup/LAPS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
58 lines (43 loc) · 1.91 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import torch
import argparse
import logging
from lib import evaluation
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='f30k', help='coco or f30k')
parser.add_argument('--data_path', type=str, default='data/', help='the path of dataset')
parser.add_argument('--save_results', type=int, default=0, help='whether save the results')
parser.add_argument('--gpu-id', type=int, default=0, help='gpu id')
opt = parser.parse_args()
torch.cuda.set_device(opt.gpu_id)
if opt.dataset == 'coco':
weights_bases = [
'runs/coco_vit',
'runs/coco_swin',
]
else:
weights_bases = [
'runs/f30k_vit',
'runs/f30k_swin',
]
for base in weights_bases:
# logging.basicConfig(filename=os.path.join(base, 'eval_extra.log'), filemode='w',
# format='%(asctime)s %(message)s', level=logging.DEBUG, force=True)
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logger.info('Evaluating {}...'.format(base))
model_path = os.path.join(base, 'model_best.pth')
# Save the final results for computing ensemble results
save_path = os.path.join(base, 'results_{}.npy'.format(opt.dataset)) if opt.save_results else None
if opt.dataset == 'coco':
# Evaluate COCO 5-fold 1K
evaluation.evalrank(model_path, data_path=opt.data_path, split='testall', fold5=True)
# Evaluate COCO 5K
evaluation.evalrank(model_path, data_path=opt.data_path, split='testall', fold5=False, save_path=save_path)
else:
# Evaluate Flickr30K
evaluation.evalrank(model_path, data_path=opt.data_path, split='test', fold5=False, save_path=save_path)
if __name__ == '__main__':
main()